Zeng Zitao

Results 4 issues of Zeng Zitao

for i in range(self.nb_blocks) : # 6 -> 12 -> 48 x = self.dense_block(input_x=x, nb_layers=4, layer_name='dense_'+str(i)) x = self.transition_layer(x, scope='trans_'+str(i)) What about those codes mean? All nb_layers equals 4? why...

在两个服务器上,起了两个容器,然后在里面装好了openmpi之类的通信工具。 简单用horovodrun 命令测试了一下,似乎应该是通的? ``` horovodrun -np 8 -H localhost:8 -p 10000 echo "233" 2021-01-30 03:50:03.454606: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0 [1,0]:233 [1,1]:233 [1,2]:233 [1,3]:233 [1,4]:233 [1,5]:233 [1,6]:233 [1,7]:233...

1.In Huggingface or modelscope the newest demo.py forget to set IMAGENET_MEAN and IMAGENET_STD 2.After fixing this issue run demo.py, error is : Input type(c10:BFloat16) and bias type(c10:Half)should be the same....

大致是 按照微调教程一步步走下去的 已经把数据对应的图片 csv json 都传到了服务器上 可是执行: train_ds = Dataset.from_json("/lora_qwen/data_vl_train.json") 去利用Dataset读取对应json的时候,非常非常慢,这是虽然服务器上已经有图片了,但是没检测到,还是去网上下载了么? 虽然最后能微调训练完毕,可是感觉这个现象挺异常的,所以想看看有无思路去排查。恳请不吝赐教,谢谢! 当然有个情况是,我在本地拿modelscope去load这批图片也load不进来,是通过其它电脑将图片和原始的csv生成后,发到我本机的,然后再在我本机上生成了data_vl json 再统一上传到服务器去执行这些的。 对应生成的data_vl_test.json 只有4张图片,但是导入也是同样的缓慢 [ { "id": "identity_497", "conversations": [ { "from": "user", "value": "COCO Yes: /coco_2014_caption/374916.jpg"...