Yifeng Zhang
Yifeng Zhang
> > 人机对弈的时候还要考虑人一方的move,另外即使保留也只是两个move之后的子树,考虑到每一层的分支数量,两层之后的一个分支中的数据其实很少 > > 那在self_play的过程中为什么就要保存下来呢? 是因为self_play的过程中页是经过类似的搜索过程对整颗mcts树上的值有变动吗? 个人理解如果人机的话,只有一方搜索,相当于树更多的包含了对机器有利的分支,因为人很可能走对他有利的分支,这个分支很可能在树里面比较少探索的深度比较有限,所以保留下来意义也不大,数据太少。而如果self play 的时候,两个方向都有一定深度,所以适合共享
能问下里面的kl的阈值和学习率调整参数的值是凭经验吗?还是有一定计算方法?谢谢
I think this change is essentially reaching reliability in MemoryChannel when using taildirSource. So the performance diff is essentially the diff of MemoryChannel and FileChannel. In my tests it saves...
solved by myself. for those who need it: use a new scope for every model ```python scope = fluid.Scope() with fluid.scope_guard(scope): place = fluid.CPUPlace() exe = fluid.Executor(place) [inference_program, _, fetch_targets]...