sneaxiy

Results 17 comments of sneaxiy

“快速开始”里的“部署”是否可以合并在一起呢,比如叫“安装指南”?一般来说,用户希望本地能安装起来,然后再考虑集群安装。而集群部署其实也属于安装的一部分,感觉不太适合单独作为一个章节。 “安装指南”里包含3部分: 1. 安装指南 / Install Guide 1. 云端快速体验 / Cloud Playground 1. 本地快速安装 / Local Try Out 1. Kubernetes集群安装 / Deployment on Kubernetes Cluster 1. 高可用部署 / High Availability...

> 4. 语法说明 / Grammar Reference > 1. 训练 / Training > 1. 预测 / Predicting > 1. 模型评估 / Evaluation > 1. 模型解释 / Model Explain > 1. 自定义处理...

> > “快速开始”里的“部署”是否可以合并在一起呢,比如叫“安装指南”?一般来说,用户希望本地能安装起来,然后再考虑集群安装。而集群部署其实也属于安装的一部分,感觉不太适合单独作为一个章节。 > > “安装指南”里包含3部分: > > > > 1. 安装指南 / Install Guide > > > > 1. 云端快速体验 / Cloud Playground > > 2. 本地快速安装 / Local...

> That tensorflow.train call feature derivation, verifier, and then train Tensorflow model. I am afraid that if we use this way, we would move many Go codes into Python. In...

> @sneaxiy agree with that, for my option, we can keep the Go packages feature_derivation/verifier/sqlfs, and exports them as Python API, that we can call them in Python runtime package....

1. SQLFlow connects SQL and AI together. ![image](https://user-images.githubusercontent.com/32832641/85244975-cad12200-b478-11ea-94a4-314c9a8a19f4.png) 2. SQLFlow is a powerful AI tool. ![image](https://user-images.githubusercontent.com/32832641/85245182-606cb180-b479-11ea-8a2b-af0858c0bcb4.png)

Also, `TO EVALUATE` should output the prediction result of each sample.

@wangkuiyi The conclusion is that we should: - keep `PremadeModelParamsDocs`, `OptimizerParameterDocs` and `XGBoostObjectiveDocs`. - remove `ModelParameterJSON`, `OptimizerParameterJSON` and `XGBoostObjectiveJSON`. - (optional) after we have removed `*JSON` objects, we can generate...

> - [ ] Add `sqlflow_submitter.solve()` function to solve the programming problem as the Python API > - [ ] support optflow job > - [ ] support pyomo job...

I am confused why we need SSA IR. It seems that the proposal has nothing to do with SSA. Or should we find a better name to describe the proposed...