Results 8 comments of legal

I have the same problem. Have you solved it?

你这个训练的很好啊,我用的train的模式,我的semantic loss在val上都只能到0.001,detail loss是0.03左右,和你的结果差了一个量级呢

In CornerNet.json,you should change both batch_size and chunk_sizes.For example, the batch_size is 30, the chunk_sizes is [15, 15]

How many GPU do you have? If you have just one, I think you can try set chunk_sizes=[1].

https://github.com/PaddlePaddle/Paddle-Lite/issues/10469 希望提供opencl上全局限制Image2D的接口,通过config文件配置若想避免layout算子强制执行buffer2Image,需要把一连串的算子都指定到cpu,但推理就会很慢了

> 麻烦把你说的命令发一下吧 ./lite/tools/build_linux.sh --arch=armv8 --toolchain=gcc --with_opencl=ON --with_log=ON --with_profile=ON --with_extra=ON --with_python=ON

> 我试了下,可以找到 build.lite.linux.armv8.gcc.opencl/inference_lite_lib.armlinux.armv8.opencl 目录啊,我猜测你是改代码后希望能增量编译吧,你可以直接进入 build.lite.linux.armv8.gcc.opencl 执行: > > ``` > $ cd build.lite.linux.armv8.gcc.opencl > $ make -j publish_inference > ``` 好的,非常感谢~