hust-cxl
hust-cxl
Recently, I have read your paper about MTSAL, and I am trying to re-implement your algorithm. But I cannot understand your cost function exactly. Could you give me your email...
In your function feature_compute.py/return_results(), I saw a critical parameter and it was like as follow: if max_score < 0.78: continue else: ab_normal = cur_cat I was confused how you obtained...
你好,看到你的代码,觉得会对自己的工作有帮助,想问下有没有对应的paper,我想去读一读
嗨,yxlu, 我用您训练好的g_best_vb模型做推理,如果输入的是整个wav文件,会报内存不足的错误,看了之前的issue,您回复说可以在推理时把wav分段推理,但不保证效果。于是我尝试把一段长1分20多秒的wav,切分成2s的小片段,逐步推理,具体在您的inference.py上做了一些简单修改,修改的代码段如下: `def inference(a): print(h) model = MPNet(h).to(device) state_dict = load_checkpoint(a.checkpoint_file, device) model.load_state_dict(state_dict['generator']) test_indexes = os.listdir(a.input_noisy_wavs_dir) os.makedirs(a.output_dir, exist_ok=True) model.eval() with torch.no_grad(): for index in track(test_indexes): noisy_wav, _ = librosa.load(os.path.join(a.input_noisy_wavs_dir, index),...