erhul
erhul
``` elif norm == "l_2": g_norm = torch.norm(g.view(g.shape[0],-1),dim=1).view(-1,1,1,1) scaled_g = g/(g_norm + 1e-10) d = (d + scaled_g*alpha).view(d.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(d) ``` Why is the `renorm` operation in the L2-norm PGD attack, i.e.,...
 Why does gradient overflow occur? It seems that it doesn't affect the experimental results. Have you encountered this situation during training? How did you solve it?
from torchvision.transforms import transforms # color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) transforms = torch.nn.Sequential( transforms.RandomResizedCrop(size=size), transforms.RandomHorizontalFlip(), # transforms.RandomApply([color_jitter], p=0.8), transforms.ColorJitter(0.8 * s,...