erhul

Results 3 issues of erhul

``` elif norm == "l_2": g_norm = torch.norm(g.view(g.shape[0],-1),dim=1).view(-1,1,1,1) scaled_g = g/(g_norm + 1e-10) d = (d + scaled_g*alpha).view(d.size(0),-1).renorm(p=2,dim=0,maxnorm=epsilon).view_as(d) ``` Why is the `renorm` operation in the L2-norm PGD attack, i.e.,...

![image](https://github.com/user-attachments/assets/2ec082b4-f6d4-4bae-a40c-8e465bf54d56) Why does gradient overflow occur? It seems that it doesn't affect the experimental results. Have you encountered this situation during training? How did you solve it?

from torchvision.transforms import transforms # color_jitter = transforms.ColorJitter(0.8 * s, 0.8 * s, 0.8 * s, 0.2 * s) transforms = torch.nn.Sequential( transforms.RandomResizedCrop(size=size), transforms.RandomHorizontalFlip(), # transforms.RandomApply([color_jitter], p=0.8), transforms.ColorJitter(0.8 * s,...