vision icon indicating copy to clipboard operation
vision copied to clipboard

Datasets, Transforms and Models specific to Computer Vision

Results 21 vision issues
Sort by recently updated
recently updated
newest added

基于project里面提供的train.py运行以下代码 ``` python train.py \ --data-path /home/kunyangzhou/project/dataset/coco \ --dataset coco \ --model retinanet_resnet50_fpn \ --batch-size 8 \ --pretrained \ --test-only ``` 然后出现报错 ``` Stack trace (most recent call last) in...

``` File ~/.cache/pants/named_caches/pex_root/venvs/s/526a591d/venv/lib/python3.8/site-packages/oneflow/framework/dtype.py:48 43 def convert_proto_dtype_to_oneflow_dtype(proto_dtype): 44 return oneflow._oneflow_internal.deprecated.GetDTypeByDataType(proto_dtype) 47 _ONEFLOW_DTYPE_TO_NUMPY_DTYPE = { ---> 48 oneflow.bool: np.bool, 49 oneflow.float: np.float32, 50 oneflow.float16: np.float16, 51 oneflow.float32: np.float32, 52 oneflow.float64: np.double, 53...

+ https://libraries.io/pypi/torchvision + https://libraries.io/pypi/flowvision 比如TorchVision有六个依赖。

当前flowvision的release版本0.2.1和Oneflow0.9.0没对齐,比如oneflow0.9.0将`Tensor.zeros_`更改成了`Tensor.zero_`。 https://github.com/Oneflow-Inc/oneflow/pull/7593 flowvision这边的master分支在这个问题上已经更新了,但是release还没对齐。

Add Beit model and pretrained weights

Add convit into models

## ResNet-50 训练 参照当前 vision 下的 project 复现 resnet-50 训练和精度对齐。 ## 参考 - pytorch:[resent](https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py) - timm:[resnet](https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/resnet.py) ### 主要目标 - [ ] 2022.05.11 - 2022.5.12:熟悉 vision 下的分类模型训练代码,数据集配置并跑通。 - [ ] 2022.05.12...

Add convit model and pretrained weights

Add xcit model and pretrained weights

![image](https://user-images.githubusercontent.com/92794867/176635380-d018c16c-5f57-4138-87b7-d5489ffd677d.png) ``` python import oneflow as flow import torch import numpy as np a = np.random.randn(3,3).astype(np.float32) b = 2 torch_a = torch.from_numpy(a) flow_a = flow.from_numpy(a) print(torch.div(torch_a,b,rounding_mode='floor')) print(flow.div(flow_a,b).floor()) print(flow.div(flow_a,b,rounding_mode='floor')) ```