HandsLing
HandsLing
@eguoguo321 请问您是用什么数据去finetune的呢?自己制作的数据集吗?
i did that but not have cython_bbox,just bbox,so i changed cython_bbox into bbox in where it was imported
i follow your steps,but the output has three members: easy,hard.. they are all zeros,just has the time
2017-05-22 19:11:08,795 root INFO Raw Results: 2017-05-22 19:11:08,795 root INFO val easy (raw) : 0.0000 2017-05-22 19:11:08,795 root INFO val medium (raw) : 0.0000 2017-05-22 19:11:08,795 root INFO val hard...
你指的是把kitti提供的训练集拆分成两半的那种吗?我是直接把原来的训练集复制一份,最后根据train.txt或者是val.txt中的数据来删除数据得到训练集和测试集
import os import glob import numpy as np path = '/home/lingck/Kitti/object/train.txt' train_dir = '/home/lingck/second.pytorch/second/object/testing' f = open(path,'r').readlines() r = [] for ff in f: r.append(ff.split('\n')[0].zfill(6)) f_rgb = glob.glob(os.path.join(train_dir, 'image_2', '*.png'))...
@wubaoyuan 求解答。谢谢,另外我的tfrecord是自己生成的,我是二分类,但是最后只有一个tfrecord文件
@qwn19970728 thx, but i did changed that before, and i can get the same embedding for one image twice. and the distance in this issue was calculated by these embeddings
然后我把剪枝后的模型和剪枝前的模型对比了一下,速度上剪枝后的模型还慢些了,我看了模型结构好像是比官方的yolo模型多了很多的bn结
那训练完之后,怎么把训练完的模型替换到流式语音识别部署那里去呢?替换一个model.yaml已经对应的模型就可以了么