GUIMINLONG

Results 10 comments of GUIMINLONG

I have a same problem regarding re-constructing pred

> one_hot_predictions, accuracy, final_loss = sess.run( > [pred, accuracy, cost], > feed_dict={ > "x:0": X_test, > "y:0": one_hot(y_test) > } > ) How you get it working?

> I have a related clarification question. What is the proper way of using the offsets computed during the calibration in the setup_MPUs function? > > I have 8 MPU6050s...

The problem already solved. I realize it by replacing the original "mpu.dmp_read_fifo(0);" with "while (!(mpu.dmp_read_fifo(0))){}" ![1685173242220](https://github.com/ZHomeSlice/Simple_MPU6050/assets/70750021/f63fb33f-9d23-45e6-a797-3ffa0f1845bb)

> Sorry for the delayed post. The code is designed to capture the packets on a first come basis. or to retrieve the packet as soon as it is available...

inverse fcwt will be very helpful ~~~~l

I also wondering how can I reconstruct the signal

> 自定义数据集中包含不同尺寸的图片,并且也不是8的倍数,训练时会报错: ![image](https://private-user-images.githubusercontent.com/72433565/368817476-e527fa2a-f2b1-45ec-9e58-05bbb76fe8bf.png?jwt=eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJpc3MiOiJnaXRodWIuY29tIiwiYXVkIjoicmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbSIsImtleSI6ImtleTUiLCJleHAiOjE3Mjk4MjIwMjYsIm5iZiI6MTcyOTgyMTcyNiwicGF0aCI6Ii83MjQzMzU2NS8zNjg4MTc0NzYtZTUyN2ZhMmEtZjJiMS00NWVjLTllNTgtMDViYmI3NmZlOGJmLnBuZz9YLUFtei1BbGdvcml0aG09QVdTNC1ITUFDLVNIQTI1NiZYLUFtei1DcmVkZW50aWFsPUFLSUFWQ09EWUxTQTUzUFFLNFpBJTJGMjAyNDEwMjUlMkZ1cy1lYXN0LTElMkZzMyUyRmF3czRfcmVxdWVzdCZYLUFtei1EYXRlPTIwMjQxMDI1VDAyMDIwNlomWC1BbXotRXhwaXJlcz0zMDAmWC1BbXotU2lnbmF0dXJlPTY3MGFlMzEzNzc2YzM5MTVkOWY2YmYzY2JkZWM4NDcwYTAxNWRmMjM3ZjA5MmU4NmQyMDA0YTg2MTBiYTdiMDEmWC1BbXotU2lnbmVkSGVhZGVycz1ob3N0In0.jPrYgOpuqmKUszR3llGVnVa_0g8vpu86BsPqpkDUrmk) 这个有什么解决办法吗?难道需要先对所有数据手动裁剪在进行训练吗?实际情况中输入的每张图片尺寸也不会都是一样的啊 就是要裁剪的吧,模型的框架确定,允许的输入的维度就定死了的。实际情况应该是大了脚本裁剪,小了脚本扩充的吧。