BlackcOVER
BlackcOVER
I don't understand why different query in the same batch use the same set of indexes? model.py line 419 index = tf.reshape(tf.range(1., tf.cast(self.batch_size, dtype=tf.float32) + 1), tf.shape(self.label))
FM.py中 elif self.loss_type == 'log_loss': self.out = tf.sigmoid(self.out) if self.lambda_bilinear > 0: self.loss = tf.contrib.losses.log_loss(self.out, self.train_labels, weight=1.0, epsilon=1e-07, scope=None) + tf.contrib.layers.l2_regularizer(self.lamda_bilinear)(self.weights['feature_embeddings']) # regulizer else: self.loss = tf.contrib.losses.log_loss(self.out, self.train_labels, weight=1.0, epsilon=1e-07,...