0x3f3f3f3fun

Results 72 comments of 0x3f3f3f3fun

Hello! For the first issue, the training will stop when you reach the maximum training steps, and you can modify your maximum training steps by setting `max_steps` in your training...

Yes, I have also encountered this problem when the GPU memory is not enough.

It takes 2~3 days :)

Hello! 1. v1_face.pth. This checkpoint contains the weight of IRControlNet, which receives a smooth face image as condition and output a high-quality restoration result. 2. I am not familiar with...

> Hi, thanks for replying. Please tell me which VAE you are referring to. Please guide me on how to verify the VAE. Follow the instructions below: 1. load ControlLDM...

Sorry, AdamW is right. We will update our paper.

> > Sorry, AdamW is right. We will update our paper. > > 你好,想接着再问一下为什么可以实现任意upscale的sr 生成吗?我看了paper没有太懂这一步,我知道lq经过preprocessmodel之后变成condition,再经过vae encode成latent,model根据latent和xt(随机noise)生成高清sr,但是我不太懂为什么这个sampler可以对不同尺寸不同upscale都适用,想请您讲解一下原因?多谢多谢! 根本原因是SD的UNet可以处理任意大小的latent z,具体一点的话是任意的长宽为8的倍数的latent z。在DiffBIR中condition latent会与z进行concat,所以condition latent的大小决定了z的大小。因此当condition latent的长宽为8的倍数时,UNet可以正常运行。由于VAE降采样8倍,这个条件等价于condition的长宽为64的倍数。在代码中我们也有一个步骤是把condition padding到64的倍数。如果我没说清楚的话,欢迎继续提问。

> > > > Sorry, AdamW is right. We will update our paper. > > > > > > > > > 你好,想接着再问一下为什么可以实现任意upscale的sr 生成吗?我看了paper没有太懂这一步,我知道lq经过preprocessmodel之后变成condition,再经过vae encode成latent,model根据latent和xt(随机noise)生成高清sr,但是我不太懂为什么这个sampler可以对不同尺寸不同upscale都适用,想请您讲解一下原因?多谢多谢! > > > > >...

因为在训练的时候为了产生更大范围的condition,我们把退化的范围设置的比较大,而目前没有off-the-shelf模型是专门针对这种大范围的退化训练的,所以我们自己训了一个。大范围的condition指的是resotration module的输出覆盖了从非常平滑到非常sharp,这样训出来的IRControlNet能够接受的condition就更多了。