wdxpython
wdxpython
tensor([[0.06874, 0.05902, 0.05875, 0.05856, 0.05795, 0.05795, 0.05794, 0.05792, 0.05786, 0.05769, 0.05715, 0.05443, 0.05419, 0.05133, 0.04957, 0.04819, 0.04808, 0.04808, 0.04808, 0.04808, 0.04807, 0.04807, 0.04770, 0.04751, 0.04654, 0.04653, 0.04652, 0.04651, 0.04651, 0.04651,...
2020-07-25-15-23: epoch: 1 |loss 16.706390 | hm_loss 4.010434 | wh_loss 6.783704 | off_loss 0.331461 | id_loss 1.538475 | time 0.133333 | 2020-07-25-15-23: epoch: 2 |loss 11.525661 | hm_loss 2.593460 |...
==> torch version: 1.2.0 ==> cudnn version: 7602 ==> Cmd: ['train.py', '--exp_id', 'all_hrnet', '--gpus', '0', '--batch_size', '32', '--reid_dim', '128', '--arch', 'hrnet_18'] ==> Opt: K: 128 arch: hrnet_18 batch_size: 32 cat_spec_wh:...
def test_single(img_path, dev): """ :param img_path: :param dev: :return: """ if not os.path.isfile(img_path): print('[Err]: invalid image path.') return # Load model and put to device heads = {'hm': 2, 'reg':...
tensor([[[[0.04711, 0.03935, 0.04080, ..., 0.04247, 0.04415, 0.06830], [0.03039, 0.02412, 0.02653, ..., 0.02794, 0.02994, 0.05236], [0.03160, 0.02299, 0.02343, ..., 0.02548, 0.02898, 0.05258], ..., [0.03337, 0.02457, 0.02546, ..., 0.02669, 0.02662, 0.05000], [0.03635,...
this is the hm and dets
hm还是网络的输出,没经过其他的处理,打印出来看值都太小,在进行阈值筛选的时候全部过滤掉了,那么就是训练的问题,但是输入大小训练和测试是相同的,您的类别数是5,我也在opt里面进行修改了,那还有哪些地方需要进行修改呢?
我有两个类别 在label里面一个是0,一个是1 这样对吗?我看您说背景是0,我应该写成1和2?
目前的训练和测试的分辨率都是320,测试过程您想看什么信息,我打印出来
为什么我把batch['hm']打印出来全是0呢?