RDSNet icon indicating copy to clipboard operation
RDSNet copied to clipboard

about the result on coco test2017

Open ghost opened this issue 4 years ago • 3 comments

I've test the model you provided on coco val2017, but I don't know how to test the model on coco test2017.could you tell me how to do that? I test the model on coco val2017 with below command line whose result is similar to yours.

CUDA_VISIBLE_DEVICES=3,2 ./tools/dist_test.sh ./configs/rdsnet/rdsnet_r50_fpn_1x.py ./work_dirs/rdsnet_r50_fpn_1x/epoch_12.pth 2 --eval bbox segm --out self_train_val2017_rdsnet_r50_results.12_epoch.pkl
*****************************************
Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed. 
*****************************************
loading annotations into memory...
loading annotations into memory...
Done (t=0.72s)
creating index...
Done (t=0.75s)
creating index...
index created!
index created!
[>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>] 5000/5000, 11.5 task/s, elapsed: 436s, ETA:     0s
writing results to self_train_val2017_rdsnet_r50_results.12_epoch.pkl
Starting evaluate bbox and segm
Loading and preparing results...
DONE (t=4.99s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *bbox*
DONE (t=109.74s).
Accumulating evaluation results...
DONE (t=16.81s).
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.369
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.572
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.398
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.216
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.408
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.480
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.313
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.507
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.539
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.352
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.581
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.695
Loading and preparing results...
DONE (t=16.04s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=128.71s).
Accumulating evaluation results...
DONE (t=16.85s).
Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.322
Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = 0.528
Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = 0.337
Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.142
Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.358
Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.478
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = 0.286
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = 0.446
Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = 0.468
Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.266
Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.515
Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.650

if I want to test the model on coco test2017, how could I do that? should I uncomment the code in the file configs/rdsnet/rdsnet_r101_fpn_1x.py and change them to the code next to that? before:

        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        # ann_file=data_root + 'annotations/image_info_test-dev2017.json',
        # img_prefix=data_root + 'test2017/',

after:

        # ann_file=data_root + 'annotations/instances_val2017.json',
        # img_prefix=data_root + 'val2017/',
        ann_file=data_root + 'annotations/image_info_test-dev2017.json',
        img_prefix=data_root + 'test2017/',

but after I do that, I run the command ./tools/dist_test.sh configs/rdsnet/rdsnet_r101_fpn_1x.py checkpoints/rdsnet_r101_fpn_1x-81ac3f75.pth 8 --eval bbox segm --out ./results/test2017_results_r101_1x.pkl. and I get the result as following, I don't know why. Could please tell me what mistakes I made and point them out?thank you

Evaluate annotation type *bbox*
DONE (t=141.98s).
Accumulating evaluation results...
DONE (t=35.18s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
Loading and preparing results...
DONE (t=56.91s)
creating index...
index created!
Running per image evaluation...
Evaluate annotation type *segm*
DONE (t=178.09s).
Accumulating evaluation results...
DONE (t=36.18s).
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50      | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.75      | area=   all | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Precision  (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=  1 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets= 10 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=   all | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
 Average Recall     (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = -1.000

ghost avatar Apr 19 '21 09:04 ghost

Can you run the code properly? Is it convenient to ask about your package version? I always report errors when running the code. I suspect it is the package version problem when configuring the environment.

jieruyao49 avatar Apr 19 '21 12:04 jieruyao49

Can you run the code properly? Is it convenient to ask about your package version? I always report errors when running the code. I suspect it is the package version problem when configuring the environment.

I also met many problems, which drove me crazy. I build the environment via the dockfile he offered, and I adjust the environment configure for several times before I can run the code. I got the packages and their version as following. I think you should pay attention to the packages' version, especially mmdet, mmcv, and torch, for I don't know which versions they are compitable with each other. It's so frustrating when I configure the environment and meet errors after run the code.

Package                Version        Location        
---------------------- -------------- ----------------
addict                 2.2.1          
albumentations         0.4.3          
asn1crypto             0.24.0         
backcall               0.1.0          
beautifulsoup4         4.7.1          
certifi                2019.11.28     
cffi                   1.12.3         
chardet                3.0.4          
conda                  4.8.0          
conda-build            3.17.8         
conda-package-handling 1.6.0          
cryptography           2.6.1          
cycler                 0.10.0         
Cython                 0.29.14        
decorator              4.4.0          
filelock               3.0.10         
future                 0.18.2         
glob2                  0.6            
idna                   2.8            
imagecorruptions       1.1.0          
imageio                2.6.1          
imgaug                 0.2.6          
ipython                7.5.0          
ipython-genutils       0.2.0          
jedi                   0.13.3         
Jinja2                 2.10.1         
kiwisolver             1.1.0          
libarchive-c           2.8            
lief                   0.9.0          
MarkupSafe             1.1.1          
matplotlib             3.1.2          
mkl-fft                1.0.12         
mkl-random             1.0.2          
mmcv                   0.2.14         
mmdet                  1.0rc0+0fd3abb /home/fcy/RDSNet
mmpycocotools          12.0.3         
networkx               2.4            
numpy                  1.16.3         
olefile                0.46           
opencv-python          4.1.2.30       
opencv-python-headless 4.1.2.30       
parso                  0.4.0          
pexpect                4.7.0          
pickleshare            0.7.5          
Pillow                 6.0.0          
pip                    19.1           
pkginfo                1.5.0.1        
prompt-toolkit         2.0.9          
psutil                 5.6.2          
ptyprocess             0.6.0          
pycocotools            2.0.0          
pycosat                0.6.3          
pycparser              2.19           
Pygments               2.3.1          
pyOpenSSL              19.0.0         
pyparsing              2.4.6          
PySocks                1.6.8          
python-dateutil        2.8.1          
pytz                   2019.1         
PyWavelets             1.1.1          
PyYAML                 5.1            
requests               2.21.0         
ruamel-yaml            0.15.46        
scikit-image           0.16.2         
scipy                  1.4.1          
setuptools             41.0.1         
six                    1.12.0         
soupsieve              1.8            
terminaltables         3.1.0          
torch                  1.1.0          
torchvision            0.2.2          
tqdm                   4.19.9         
traitlets              4.3.2          
urllib3                1.24.2         
wcwidth                0.1.7          
wheel                  0.33.1         
yapf                   0.31.0         

ghost avatar Apr 19 '21 14:04 ghost

when I use torch1.1.0,torchvison=0.2.2, I met error as below:

File "/mnt/media/users/zhaijunzhi/code/crack_detection/multimodal_crack/RDSNet-master/mmdet/models/mask_heads/rdsnet_mask_head.py", line 176, in loss gt_mask[torch.bitwise_not(crop_mask)] = -1 AttributeError: module 'torch' has no attribute 'bitwise_not'

zjz5250 avatar Jun 07 '21 14:06 zjz5250