NaN in multi-node training
NaN appears after one update (see the figure below) but the same training command with 1 node has no issue. Any suggestions?
python3 -m verl.trainer.main_ppo \
data.train_files=$HOME/data/math/train.parquet \
data.val_files=/$HOME/data/math/train.parquet \
data.train_batch_size=1024 \
data.val_batch_size=1312 \
data.max_prompt_length=512 \
data.max_response_length=1024 \
data.return_raw_chat=True \
actor_rollout_ref.model.path=Qwen/Qwen2.5-14B \
actor_rollout_ref.actor.optim.lr=1e-6 \
actor_rollout_ref.model.use_remove_padding=True \
actor_rollout_ref.actor.ppo_mini_batch_size=256 \
actor_rollout_ref.actor.ppo_micro_batch_size_per_gpu=16 \
actor_rollout_ref.actor.fsdp_config.param_offload=False \
actor_rollout_ref.actor.fsdp_config.grad_offload=False \
actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
actor_rollout_ref.model.enable_gradient_checkpointing=True \
actor_rollout_ref.rollout.log_prob_micro_batch_size_per_gpu=32 \
actor_rollout_ref.rollout.tensor_model_parallel_size=4 \
actor_rollout_ref.rollout.name=vllm \
actor_rollout_ref.rollout.gpu_memory_utilization=0.4 \
actor_rollout_ref.ref.log_prob_micro_batch_size_per_gpu=32 \
actor_rollout_ref.ref.fsdp_config.param_offload=True \
critic.optim.lr=1e-5 \
critic.model.use_remove_padding=True \
critic.model.path=Qwen/Qwen2.5-14B \
critic.model.enable_gradient_checkpointing=True \
critic.ppo_micro_batch_size_per_gpu=32 \
critic.model.fsdp_config.param_offload=False \
critic.model.fsdp_config.grad_offload=False \
critic.model.fsdp_config.optimizer_offload=False \
algorithm.kl_ctrl.kl_coef=0.001 \
trainer.critic_warmup=0 \
trainer.logger=['console','wandb'] \
trainer.project_name='my_rl_exps' \
trainer.experiment_name=test \
trainer.n_gpus_per_node=8 \
trainer.nnodes=2 \
trainer.save_freq=50 \
trainer.test_freq=10 \
trainer.total_epochs=15
What does the complete multi-node script look like here? Isn't this a single-node script?
same Nan in single node verl0.2 + vllm0.7.2
same NaN, especially when batch_size is large
How to run the complete multi-node scripts? Should I run the same script in the both machine?
Here is my solution https://github.com/volcengine/verl/issues/315#issuecomment-2670699073
same issue