different confidence threshold get the same mAP
here is my code : for confidence in range(1,10): label_filename = "./evaluate/label_2" result_path="./results/exp%d"%49 split_file = "./evaluate/lists/val.txt" print(0.9+confidence/100) evaluate(label_filename, result_path, split_file,score_thresh=0.9+confidence/100)
output:
0.91
Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.48 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.61 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.48 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.41, 41.65 aos AP:12.04, 10.18, 10.61
0.92 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.50 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.62 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.50 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.41, 41.65 aos AP:12.04, 10.18, 10.62
0.93 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.52 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.63 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.52 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.43, 41.65 aos AP:12.04, 10.18, 10.63
0.9400000000000001 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.54 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.64 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.54 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.48, 41.65 aos AP:12.04, 10.18, 10.64
0.9500000000000001 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.58 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.66 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.58 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.53, 41.65 aos AP:12.04, 10.18, 10.66
0.96 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.62 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.67 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.62 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.59, 41.65 aos AP:12.04, 10.18, 10.67
0.97 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.69 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.92, 7.50 aos AP:12.04, 10.18, 10.70 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.69 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.67, 41.65 aos AP:12.04, 10.18, 10.70
0.98 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.75 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 7.94, 7.50 aos AP:12.04, 10.18, 10.73 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.75 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.76, 41.65 aos AP:12.04, 10.18, 10.73
0.99 Car AP(Average Precision)@0.70, 0.70, 0.70: bbox AP:27.05, 23.71, 24.87 bev AP:35.93, 34.25, 32.38 3d AP:8.86, 8.03, 7.50 aos AP:12.04, 10.18, 10.79 Car AP(Average Precision)@0.70, 0.50, 0.50: bbox AP:27.05, 23.71, 24.87 bev AP:61.88, 61.37, 57.36 3d AP:48.05, 43.98, 41.65 aos AP:12.04, 10.18, 10.79 Process finished with exit code 0
what change you made