Learning2Regrasp icon indicating copy to clipboard operation
Learning2Regrasp copied to clipboard

Code for "Learning to Regrasp by Learning to Place"

Learning2Regrasp

Learning to Regrasp by Learning to Place, CoRL 2021.

Introduction

We propose a point-cloud-based system for robots to predict a sequence of pick-and-place operations for transforming an initial object grasp pose to the desired object grasp poses. We introduce a new and challenging synthetic dataset for learning and evaluating the proposed approach. If you find this project useful for your research, please cite:

@inproceedings{
cheng2021learning,
title={Learning to Regrasp by Learning to Place},
author={Shuo Cheng and Kaichun Mo and Lin Shao},
booktitle={5th Annual Conference on Robot Learning },
year={2021},
url={https://openreview.net/forum?id=Qdb1ODTQTnL}
}

Real-world regrasping demo:

regrasp

How to Use

Environment

  • python 3.8 (Anaconda)
  • pip install -r requirements.txt

Dataset

Visualization of sample stable poses:

regrasp

Please download the dataset and place it inside this folder.

Reproducing Results

  • Evaluating synthetic data: python scripts/evaluate_testset.py
  • Evaluating real data: bash scripts/test_real_data.sh

Test Your Own Data:

  • Please organize your data in the real_data folder as the example provided
  • Please make your data as clean and complete as possible since an offset (x_mean, y_mean, z_min) will be subtracted for centralizing the point cloud

Training

  • Train generator: bash scripts/train_pose_generation.sh
  • Train classifier: bash scripts/train_multi_task.sh