'AttentionWrapper' object has no attribute 'zero_state'
def _build_decoder_cell(self, hparams, encoder_outputs, encoder_state,
source_sequence_length):
"""Build a RNN cell with attention mechanism that can be used by decoder."""
# No Attention
if not self.has_attention:
return super(AttentionModel, self)._build_decoder_cell(
hparams, encoder_outputs, encoder_state, source_sequence_length)
elif hparams["attention_architecture"] != "standard":
raise ValueError(
"Unknown attention architecture %s" % hparams["attention_architecture"])
num_units = hparams["num_units"]
num_layers = self.num_decoder_layers
num_residual_layers = self.num_decoder_residual_layers
infer_mode = hparams["infer_mode"]
dtype = tf.float32
# Ensure memory is batch-major
if self.time_major:
memory = tf.transpose(encoder_outputs, [1, 0, 2])
else:
memory = encoder_outputs
if (self.mode == tf.estimator.ModeKeys.PREDICT and
infer_mode == "beam_search"):
memory, source_sequence_length, encoder_state, batch_size = (
self._prepare_beam_search_decoder_inputs(
hparams["beam_width"], memory, source_sequence_length,
encoder_state))
else:
batch_size = self.batch_size
# Attention
attention_mechanism = self.attention_mechanism_fn(
hparams["attention"], num_units, memory, source_sequence_length, self.mode)
cell = model_helper.create_rnn_cell(
unit_type=hparams["unit_type"],
num_units=num_units,
num_layers=num_layers,
num_residual_layers=num_residual_layers,
forget_bias=hparams["forget_bias"],
dropout=hparams["dropout"],
num_gpus=self.num_gpus,
mode=self.mode,
single_cell_fn=self.single_cell_fn)
# Only generate alignment in greedy INFER mode.
alignment_history = (self.mode == tf.estimator.ModeKeys.PREDICT and
infer_mode != "beam_search")
cell = tfa.seq2seq.AttentionWrapper(
cell,
attention_mechanism,
attention_layer_size=num_units,
alignment_history=alignment_history,
output_attention=hparams["output_attention"],
name="attention")
# TODO(thangluong): do we need num_layers, num_gpus?
device = tf.device(model_helper.get_device_str(num_layers-1, self.num_gpus))
cell = tf.nn.rnn_cell.DeviceWrapper(cell,
device)
cell = tf.nn.rnn_cell.DropoutWrapper(cell, input_keep_prob=0.8)
if hparams["pass_hidden_state"]:
decoder_initial_state = cell.zero_state(batch_size=batch_size*hparams["beam_width"], dtype=dtype).clone(
cell_state=encoder_state)
else:
decoder_initial_state = cell.zero_state(batch_size=batch_size*hparams["beam_width"], dtype=dtype)
return cell, decoder_initial_state
Error: File "/home/ml-ai4/Neel-dev023/ChatBot/nmt-chatbot/nmt/nmt/attention_model.py", line 144, in _build_decoder_cell decoder_initial_state = cell.zero_state(batch_size=batch_size*hparams["beam_width"], dtype=dtype).clone( File "/home/ml-ai4/Neel-dev023/ChatBot/nmt-chatbot/venv/lib/python3.6/site-packages/tensorflow_core/python/ops/rnn_cell_wrapper_impl.py", line 199, in zero_state return self.cell.zero_state(batch_size, dtype) File "/home/ml-ai4/Neel-dev023/ChatBot/nmt-chatbot/venv/lib/python3.6/site-packages/tensorflow_core/python/ops/rnn_cell_wrapper_impl.py", line 431, in zero_state return self.cell.zero_state(batch_size, dtype) AttributeError: 'AttentionWrapper' object has no attribute 'zero_state'
Facing the same issue while try to use tensorflow_addons with tf V2.X

Facing the same issue with tensorflow version 2.x
Got the solution : Just replace zero_state with get_inital_state, because the function get_initial_state returns an AttentionWrapperState tuple containing zeroed out tensors same as zero_state
Hello @princebaretto99 I have already found this solution the same day I encountered this issue but really sorry because I forget to update it here in github.Zero_state issue is resolved by using get_initial_state;
Thank you for your solution.
