Unable to access dataset
What I need help with / What I was wondering I am working on accessing a dataset I created today. I am receiving an error that it cannot be found and received the following message. How long do I have to wait until the dataset is available online with tfds-nightly?
Available datasets: - abstract_reasoning - accentdb - aeslc - aflw2k3d - ag_news_subset - ai2_arc - ai2_arc_with_ir - amazon_us_reviews - anli - answer_equivalence - arc - asqa - asset - assin2 - bair_robot_pushing_small - bccd - beans - bee_dataset - beir - big_patent - bigearthnet - billsum - binarized_mnist - binary_alpha_digits - ble_wind_field - blimp - booksum - bool_q - c4 - caltech101 - caltech_birds2010 - caltech_birds2011 - cardiotox - cars196 - cassava - cats_vs_dogs - celeb_a - celeb_a_hq - cfq - cherry_blossoms - chexpert - cifar10 - cifar100 - cifar10_1 - cifar10_corrupted - citrus_leaves - cityscapes - civil_comments - clevr - clic - clinc_oos - cmaterdb - cnn_dailymail - coco - coco_captions - coil100 - colorectal_histology - colorectal_histology_large - common_voice - coqa - cos_e - cosmos_qa - covid19 - covid19sum - crema_d - criteo - cs_restaurants - curated_breast_imaging_ddsm - cycle_gan - d4rl_adroit_door - d4rl_adroit_hammer - d4rl_adroit_pen - d4rl_adroit_relocate - d4rl_antmaze - d4rl_mujoco_ant - d4rl_mujoco_halfcheetah - d4rl_mujoco_hopper - d4rl_mujoco_walker2d - dart - davis - deep_weeds - definite_pronoun_resolution - dementiabank - diabetic_retinopathy_detection - diamonds - div2k - dmlab - doc_nli - dolphin_number_word - domainnet - downsampled_imagenet - drop - dsprites - dtd - duke_ultrasound - e2e_cleaned - efron_morris75 - emnist - eraser_multi_rc - esnli - eurosat - fashion_mnist - flic - flores - food101 - forest_fires - fuss - gap - geirhos_conflict_stimuli - gem - genomics_ood - german_credit_numeric - gigaword - glue - goemotions - gov_report - gpt3 - gref - groove - grounded_scan - gsm8k - gtzan - gtzan_music_speech - hellaswag - higgs - hillstrom - horses_or_humans - howell - i_naturalist2017 - i_naturalist2018 - imagenet2012 - imagenet2012_corrupted - imagenet2012_fewshot - imagenet2012_multilabel - imagenet2012_real - imagenet2012_subset - imagenet_a - imagenet_lt - imagenet_r - imagenet_resized - imagenet_sketch - imagenet_v2 - imagenette - imagewang - imdb_reviews - irc_disentanglement - iris - istella - kddcup99 - kitti - kmnist - lambada - lfw - librispeech - librispeech_lm - libritts - ljspeech - lm1b - locomotion - lost_and_found - lsun - lvis - malaria - math_dataset - math_qa - mctaco - media_sum - mlqa - mnist - mnist_corrupted - movie_lens - movie_rationales - movielens - moving_mnist - mrqa - mslr_web - mt_opt - multi_news - multi_nli - multi_nli_mismatch - natural_questions - natural_questions_open - newsroom - nsynth - nyu_depth_v2 - ogbg_molpcba - omniglot - open_images_challenge2019_detection - open_images_v4 - openbookqa - opinion_abstracts - opinosis - opus - oxford_flowers102 - oxford_iiit_pet - para_crawl - pass - patch_camelyon - paws_wiki - paws_x_wiki - penguins - pet_finder - pg19 - piqa - places365_small - plant_leaves - plant_village - plantae_k - protein_net - qa4mre - qasc - quac - quality - quickdraw_bitmap - race - radon - reddit - reddit_disentanglement - reddit_tifu - ref_coco - resisc45 - rlu_atari - rlu_atari_checkpoints - rlu_atari_checkpoints_ordered - rlu_control_suite - rlu_dmlab_explore_object_rewards_few - rlu_dmlab_explore_object_rewards_many - rlu_dmlab_rooms_select_nonmatching_object - rlu_dmlab_rooms_watermaze - rlu_dmlab_seekavoid_arena01 - rlu_locomotion - rlu_rwrl - robomimic_ph - robonet - robosuite_panda_pick_place_can - rock_paper_scissors - rock_you - s3o4d - salient_span_wikipedia - samsum - savee - scan - scene_parse150 - schema_guided_dialogue - sci_tail - scicite - scientific_papers - scrolls - sentiment140 - shapes3d - simpte - siscore - smallnorb - smartwatch_gestures - snli - so2sat - speech_commands - spoken_digit - squad - squad_question_generation - stanford_dogs - stanford_online_products - star_cfq - starcraft_video - stl10 - story_cloze - summscreen - sun397 - super_glue - svhn_cropped - symmetric_solids - tao - ted_hrlr_translate - ted_multi_translate - tedlium - tf_flowers - the300w_lp - tiny_shakespeare - titanic - trec - trivia_qa - tydi_qa - uc_merced - ucf101 - unified_qa - vctk - visual_domain_decathlon - voc - voxceleb - voxforge - waymo_open_dataset - web_graph - web_nlg - web_questions - wider_face - wiki40b - wiki_auto - wiki_bio - wiki_table_questions - wiki_table_text - wikiann - wikihow - wikipedia - wikipedia_toxicity_subtypes - wine_quality - winogrande - wit - wit_kaggle - wmt13_translate - wmt14_translate - wmt15_translate - wmt16_translate - wmt17_translate - wmt18_translate - wmt19_translate - wmt_t2t_translate - wmt_translate - wordnet - wsc273 - xnli - xquad - xsum - xtreme_pawsx - xtreme_xnli - yelp_polarity_reviews - yes_no - youtube_vis
Check that:
- if dataset was added recently, it may only be available
in tfds-nightly
- the dataset name is spelled correctly
- dataset class defines all base class abstract methods
- the module defining the dataset class is imported
What I've tried so far tfds.as_numpy(tfds.load( 'dataset_name', split='test', batch_size=-1, as_supervised=True, ))
It would be nice if... Detail how long I have to wait until it is released and available.
Environment information
-
tensorflow-datasets/tfds-nightlyversion: TensorFlow Datasets: 4.5.2+nightly
dataset_name is not a valid dataset name. Which dataset are you trying to load ?
If you're building your own dataset then it will be available to you immediately. If you want to make it available to others, then you need to merge it in a pull request and wait for the new TFDS version to be published.