datasets icon indicating copy to clipboard operation
datasets copied to clipboard

Can't download "seleb_a"

Open felixt56 opened this issue 3 years ago • 2 comments

/!\ PLEASE INCLUDE THE FULL STACKTRACE AND CODE SNIPPET

Short description Can't download "seleb_a"

Environment information

  • Operating System: <Ubuntu 20.04 focal (x86-64)>

  • Python version: <3.8.10>

  • tensorflow-datasets/tfds-nightly version: <4.5.2+nightly>

  • tensorflow/tf-nightly version: <2.8.0>

  • Does the issue still exists with the last tfds-nightly package (pip install --upgrade tfds-nightly) ? YES Reproduction instructions


import tensorflow_datasets as tfds

celeba_bldr = tfds.builder('celeb_a')
print(celeba_bldr.info)
celeba_bldr.download_and_prepare()

If you share a colab, make sure to update the permissions to share it.

Link to logs If applicable, <link to gist with logs, stack trace>

Expected behavior I need celeb_a dataset

Additional context Output: build_celeba.py

2022-03-23 18:57:25.652770: W tensorflow/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libcudart.so.11.0'; dlerror: libcudart.so.11.0: cannot open shared object file: No such file or directory 2022-03-23 18:57:25.652786: I tensorflow/stream_executor/cuda/cudart_stub.cc:29] Ignore above cudart dlerror if you do not have a GPU set up on your machine. 2022-03-23 18:57:26.961914: W tensorflow/core/platform/cloud/google_auth_provider.cc:184] All attempts to get a Google authentication bearer token failed, returning an empty token. Retrieving token from files failed with "NOT_FOUND: Could not locate the credentials file.". Retrieving token from GCE failed with "FAILED_PRECONDITION: Error executing an HTTP request: libcurl code 6 meaning 'Couldn't resolve host name', error details: Could not resolve host: metadata". tfds.core.DatasetInfo( name='celeb_a', full_name='celeb_a/2.0.1', description=""" CelebFaces Attributes Dataset (CelebA) is a large-scale face attributes dataset with more than 200K celebrity images, each with 40 attribute annotations. The images in this dataset cover large pose variations and background clutter. CelebA has large diversities, large quantities, and rich annotations, including - 10,177 number of identities, - 202,599 number of face images, and - 5 landmark locations, 40 binary attributes annotations per image.

The dataset can be employed as the training and test sets for the following computer vision tasks: face attribute recognition, face detection, and landmark (or facial part) localization.

Note: CelebA dataset may contain potential bias. The fairness indicators
[example](https://www.tensorflow.org/responsible_ai/fairness_indicators/tutorials/Fairness_Indicators_TFCO_CelebA_Case_Study)
goes into detail about several considerations to keep in mind while using the
CelebA dataset.
""",
homepage='http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html',
data_path='~/tensorflow_datasets/celeb_a/2.0.1',
download_size=1.38 GiB,
dataset_size=1.62 GiB,
features=FeaturesDict({
    'attributes': FeaturesDict({
        '5_o_Clock_Shadow': tf.bool,
        'Arched_Eyebrows': tf.bool,
        'Attractive': tf.bool,
        'Bags_Under_Eyes': tf.bool,
        'Bald': tf.bool,
        'Bangs': tf.bool,
        'Big_Lips': tf.bool,
        'Big_Nose': tf.bool,
        'Black_Hair': tf.bool,
        'Blond_Hair': tf.bool,
        'Blurry': tf.bool,
        'Brown_Hair': tf.bool,
        'Bushy_Eyebrows': tf.bool,
        'Chubby': tf.bool,
        'Double_Chin': tf.bool,
        'Eyeglasses': tf.bool,
        'Goatee': tf.bool,
        'Gray_Hair': tf.bool,
        'Heavy_Makeup': tf.bool,
        'High_Cheekbones': tf.bool,
        'Male': tf.bool,
        'Mouth_Slightly_Open': tf.bool,
        'Mustache': tf.bool,
        'Narrow_Eyes': tf.bool,
        'No_Beard': tf.bool,
        'Oval_Face': tf.bool,
        'Pale_Skin': tf.bool,
        'Pointy_Nose': tf.bool,
        'Receding_Hairline': tf.bool,
        'Rosy_Cheeks': tf.bool,
        'Sideburns': tf.bool,
        'Smiling': tf.bool,
        'Straight_Hair': tf.bool,
        'Wavy_Hair': tf.bool,
        'Wearing_Earrings': tf.bool,
        'Wearing_Hat': tf.bool,
        'Wearing_Lipstick': tf.bool,
        'Wearing_Necklace': tf.bool,
        'Wearing_Necktie': tf.bool,
        'Young': tf.bool,
    }),
    'image': Image(shape=(218, 178, 3), dtype=tf.uint8),
    'landmarks': FeaturesDict({
        'lefteye_x': tf.int64,
        'lefteye_y': tf.int64,
        'leftmouth_x': tf.int64,
        'leftmouth_y': tf.int64,
        'nose_x': tf.int64,
        'nose_y': tf.int64,
        'righteye_x': tf.int64,
        'righteye_y': tf.int64,
        'rightmouth_x': tf.int64,
        'rightmouth_y': tf.int64,
    }),
}),
supervised_keys=None,
disable_shuffling=False,
splits={
    'test': <SplitInfo num_examples=19962, num_shards=2>,
    'train': <SplitInfo num_examples=162770, num_shards=16>,
    'validation': <SplitInfo num_examples=19867, num_shards=2>,
},
citation="""@inproceedings{conf/iccv/LiuLWT15,
  added-at = {2018-10-09T00:00:00.000+0200},
  author = {Liu, Ziwei and Luo, Ping and Wang, Xiaogang and Tang, Xiaoou},
  biburl = {https://www.bibsonomy.org/bibtex/250e4959be61db325d2f02c1d8cd7bfbb/dblp},
  booktitle = {ICCV},
  crossref = {conf/iccv/2015},
  ee = {http://doi.ieeecomputersociety.org/10.1109/ICCV.2015.425},
  interhash = {3f735aaa11957e73914bbe2ca9d5e702},
  intrahash = {50e4959be61db325d2f02c1d8cd7bfbb},
  isbn = {978-1-4673-8391-2},
  keywords = {dblp},
  pages = {3730-3738},
  publisher = {IEEE Computer Society},
  timestamp = {2018-10-11T11:43:28.000+0200},
  title = {Deep Learning Face Attributes in the Wild.},
  url = {http://dblp.uni-trier.de/db/conf/iccv/iccv2015.html#LiuLWT15},
  year = 2015
}""",

) Downloading and preparing dataset 1.38 GiB (download: 1.38 GiB, generated: 1.62 GiB, total: 3.00 GiB) to ~/tensorflow_datasets/celeb_a/2.0.1... Dl Size...: 0 MiB [00:00, ? MiB/s] | 0/4 [00:00<?, ? url/s] Dl Completed...: 0%| | 0/4 [00:00<?, ? url/s] Traceback (most recent call last): File "/media/a1/SW/python-machine-learning-book-3rd-edition/ch15/build_celeba.py", line 5, in celeba_bldr.download_and_prepare() File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/dataset_builder.py", line 461, in download_and_prepare self._download_and_prepare( File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/dataset_builder.py", line 1146, in _download_and_prepare split_generators = self._split_generators( # pylint: disable=unexpected-keyword-arg File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/image/celeba.py", line 125, in _split_generators downloaded_dirs = dl_manager.download({ File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/download_manager.py", line 548, in download return _map_promise(self._download, url_or_urls) File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/download_manager.py", line 766, in _map_promise res = tf.nest.map_structure(lambda p: p.get(), all_promises) # Wait promises File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 914, in map_structure structure[0], [func(*x) for x in entries], File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow/python/util/nest.py", line 914, in structure[0], [func(*x) for x in entries], File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/download_manager.py", line 766, in res = tf.nest.map_structure(lambda p: p.get(), all_promises) # Wait promises File "/home/felixt/.local/lib/python3.8/site-packages/promise/promise.py", line 512, in get return self._target_settled_value(_raise=True) File "/home/felixt/.local/lib/python3.8/site-packages/promise/promise.py", line 516, in _target_settled_value return self._target()._settled_value(_raise) File "/home/felixt/.local/lib/python3.8/site-packages/promise/promise.py", line 226, in _settled_value reraise(type(raise_val), raise_val, self._traceback) File "/usr/lib/python3/dist-packages/six.py", line 703, in reraise raise value File "/home/felixt/.local/lib/python3.8/site-packages/promise/promise.py", line 844, in handle_future_result resolve(future.result()) File "/usr/lib/python3.8/concurrent/futures/_base.py", line 437, in result return self.__get_result() File "/usr/lib/python3.8/concurrent/futures/_base.py", line 389, in __get_result raise self._exception File "/usr/lib/python3.8/concurrent/futures/thread.py", line 57, in run result = self.fn(*self.args, **self.kwargs) File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/downloader.py", line 217, in _sync_download with _open_url(url, verify=verify) as (response, iter_content): File "/usr/lib/python3.8/contextlib.py", line 113, in enter return next(self.gen) File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/downloader.py", line 279, in _open_with_requests _assert_status(response) File "/home/felixt/.local/lib/python3.8/site-packages/tensorflow_datasets/core/download/downloader.py", line 306, in _assert_status raise DownloadError('Failed to get url {}. HTTP code: {}.'.format( tensorflow_datasets.core.download.downloader.DownloadError: Failed to get url https://drive.google.com/uc?export=download&id=0B7EVK8r0v71pZjFTYXZWM3FlRnM&confirm=t. HTTP code: 404.

felixt56 avatar Mar 23 '22 17:03 felixt56

I have the same issue. Did you solve it? But I find this issue may help as an alternative: https://github.com/tensorflow/tensorflow/issues/41492

HouyiDu avatar Mar 27 '22 21:03 HouyiDu

Unfortunately, not yet.

Look here https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch15/downloading-celeba

[https://repository-images.githubusercontent.com/190687137/70787000-14ec-11ea-84f7-6cc9843d119e]https://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch15/downloading-celeba

python-machine-learning-book-3rd-edition/ch15/downloading-celeba at master · rasbt/python-machine-learning-book-3rd-edition · GitHubhttps://github.com/rasbt/python-machine-learning-book-3rd-edition/tree/master/ch15/downloading-celeba github.com The "Python Machine Learning (3rd edition)" book code repository - python-machine-learning-book-3rd-edition/ch15/downloading-celeba at master · rasbt/python-machine-learning-book-3rd-edition

may be it will help U

Regards

Felix Teplitsky RAFAEL Ltd.


From: HouyiDu @.***> Sent: Monday, March 28, 2022 0:19 To: tensorflow/datasets Cc: TEPLITSKY FELIX; Author Subject: [Marketing Mail] Re: [tensorflow/datasets] Can't download "seleb_a" (Issue #3855)

I have the same issue. Did you solve it?

— Reply to this email directly, view it on GitHubhttps://github.com/tensorflow/datasets/issues/3855#issuecomment-1080021142, or unsubscribehttps://github.com/notifications/unsubscribe-auth/AA53JPOBP6SQJ5KZYNUBTITVCDGE7ANCNFSM5RORR3KQ. You are receiving this because you authored the thread.Message ID: @.***>

This email might have been sanitized in order to remove any potentially malicious embedded objects.


This message (including any attachments) issued by RAFAEL- ADVANCED DEFENSE SYSTEMS LTD. (hereinafter "RAFAEL") contains confidential information intended for a specific individual and purpose, may constitute information that is privileged or confidential or otherwise protected from disclosure. If you are not the intended recipient, you should contact us immediately and thereafter delete this message from your system. You are hereby notified that any disclosure, copying, dissemination, distribution or forwarding of this message, or the taking of any action based on it, is strictly prohibited. If you have received this e-mail in error, please notify us immediately by e-mail @.*** and completely delete or destroy any and all electronic or other copies of the original message and any attachments thereof.

felixt56 avatar Apr 01 '22 00:04 felixt56