flowtrack.pytorch icon indicating copy to clipboard operation
flowtrack.pytorch copied to clipboard

Pytorch implementation of FlowTrack (Simple Baselines for Human Pose Estimation and Tracking).

flowtrack.pytorch

Pytorch implementation of FlowTrack.

Simple Baselines for Human Pose Estimation and Tracking (https://arxiv.org/pdf/1804.06208.pdf)

TO DO:

  • [x] Human detection
  • [x] Single person pose estimation
  • [x] Optical flow estimation
  • [x] Box propagation
  • [ ] Pose tracking

Requirements

pytorch >= 0.4.0
torchvision
pycocotools
tensorboardX

Installation

cd lib
./make.sh

Disable cudnn for batch_norm:

# PYTORCH=/path/to/pytorch
# for pytorch v0.4.0
sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
# for pytorch v0.4.1
sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py

Training

Pose Estimation

Download data folder as $ROOT/data.

python ./tools/pose/main.py

The official code is released on Microsoft/human-pose-estimation.pytorch.

Demo

Pose Estimation

#TODO

Detection

Download pretrained detection model into models/detection/. Refer to pytorch-faster-rcnn for more information.

python ./tools/detection/demo.py

Optical Flow Estimation

Download pretrained flownet into models/flownet/. Refer to flownet2-pytorch for more information.

python ./tools/flownet/demo.py --model </path/to/model>

Update

2018.12.05:

  • Add Pose Estimation Models
  • Deconv DenseNet
  • Stacked Hourglass Network
  • FPN