flowtrack.pytorch
flowtrack.pytorch copied to clipboard
Pytorch implementation of FlowTrack (Simple Baselines for Human Pose Estimation and Tracking).
flowtrack.pytorch
Pytorch implementation of FlowTrack.
Simple Baselines for Human Pose Estimation and Tracking (https://arxiv.org/pdf/1804.06208.pdf)
TO DO:
- [x] Human detection
- [x] Single person pose estimation
- [x] Optical flow estimation
- [x] Box propagation
- [ ] Pose tracking
Requirements
pytorch >= 0.4.0
torchvision
pycocotools
tensorboardX
Installation
cd lib
./make.sh
Disable cudnn for batch_norm:
# PYTORCH=/path/to/pytorch
# for pytorch v0.4.0
sed -i "1194s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
# for pytorch v0.4.1
sed -i "1254s/torch\.backends\.cudnn\.enabled/False/g" ${PYTORCH}/torch/nn/functional.py
Training
Pose Estimation
Download data folder as $ROOT/data.
python ./tools/pose/main.py
The official code is released on Microsoft/human-pose-estimation.pytorch.
Demo
Pose Estimation
#TODO
Detection
Download pretrained detection model into models/detection/. Refer to pytorch-faster-rcnn for more information.
python ./tools/detection/demo.py
Optical Flow Estimation
Download pretrained flownet into models/flownet/. Refer to flownet2-pytorch for more information.
python ./tools/flownet/demo.py --model </path/to/model>
Update
2018.12.05:
- Add Pose Estimation Models
- Deconv DenseNet
- Stacked Hourglass Network
- FPN