RuntimeError: cuDNN error: CUDNN_STATUS_BAD_PARAM
hi, Mr. sefibk,
Thanks for your work, and if I use the "Blind data generator" to generate degradation images, the kernelGAN can estimate the correct kernel. But if the use a self-created disk kernel, and I run the code this a low-resolution image that downscales with the disk SR kernel. The code will occur error like this:

the disk kernel I used can be visualized like this:

and the kernel details is this:
def get_k():
kk = [
[0, 0, 0, 0, 0.0013339157770654528, 0.0036148217219170906, 0.0043595041514488267, 0.0036148217219170906,
0.0013339157770654528, 0, 0, 0, 0],
[0, 0, 0.00080003827014298045, 0.006060450060893929, 0.0088215133735283831, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088215133735283831, 0.006060450060893929,
0.00080003827014298045,
0, 0],
[0, 0.00080003827014298045, 0.0076458238973070832, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0076458238973070832, 0.00080003827014298045, 0],
[0, 0.006060450060893929, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.006060450060893929, 0],
[0.0013339157770654528, 0.0088215133735283831, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088215133735283831, 0.0013339157770654528],
[0.0036148217219170906, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0036148217219170906],
[0.0043595041514488267, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0043595041514488267],
[0.0036148217219170906, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0036148217219170906],
[0.0013339157770654528, 0.0088215133735283831, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.0088215133735283831, 0.0013339157770654528],
[0, 0.006060450060893929, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0088419412828830753, 0.006060450060893929, 0],
[0, 0.00080003827014298045, 0.0076458238973070832, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753, 0.0088419412828830753,
0.0088419412828830753,
0.0076458238973070832, 0.00080003827014298045, 0],
[0, 0, 0.00080003827014298045, 0.006060450060893929, 0.0088215133735283831, 0.0088419412828830753,
0.0088419412828830753, 0.0088419412828830753, 0.0088215133735283831, 0.006060450060893929,
0.00080003827014298045,
0, 0],
[0, 0, 0, 0, 0.0013339157770654528, 0.0036148217219170906, 0.0043595041514488267, 0.0036148217219170906,
0.0013339157770654528, 0, 0, 0, 0],
]
return np.array(kk)
and by the way, if you can solve the last issue I mentioned, I will be very grateful!
I think it is related to the CUDNN issue. I can't think of a reason why the type of kernel should affect the run. In fact - the algorithm is unaware of the kernel itself...