riteme.github.io icon indicating copy to clipboard operation
riteme.github.io copied to clipboard

Home Page - riteme.site

Open riteme opened this issue 8 years ago • 24 comments

https://riteme.github.io/

riteme avatar Jun 20 '17 11:06 riteme

测试 Gitment 现在可以在评论和预览中使用$\LaTeX$公式了: $$ (x + y)^n = \sum_{k = 0}^n {n \choose k} x^k y^{n - k} \tag{1.1}$$

也可以发布图片:

当然一些特殊的标签不可使用:

<script>alert("233")</script>

将会显示:

riteme avatar Jun 20 '17 11:06 riteme

Sounds Great

scris avatar Feb 13 '18 10:02 scris

Hi riteme, I set up my homepage by copying from yours just now. Is it OK? If you regard it as an act of plagiarism, I will stop and delete it. Thank you! Best Wishes

lan-qing avatar Apr 15 '18 08:04 lan-qing

@lan-qing No problem. Feel free to modify it as you like. Although I don't think the site is well-written. Don't mind. QAQ

riteme avatar Apr 15 '18 10:04 riteme

test

liuyuchang avatar May 27 '18 07:05 liuyuchang

花了一下午加一晚上的时间把所有博客从头到尾都读了一遍,真是宝藏

Myriad-Dreamin avatar Aug 14 '18 15:08 Myriad-Dreamin

您的是怎么绘出树的结构图的?比如这篇

ccinv avatar Aug 17 '18 12:08 ccinv

@ccinv 我现在基本上是用 LibreOffice Draw 手画的(可能跟 PowerPoint 差不多),包括那一篇文章。

riteme avatar Aug 17 '18 14:08 riteme

大佬!gitment怎么配置的啊!我按着教程做却没有任何显示。。是不是我的版本太低了,没有预置gitment

sqwlly avatar Aug 23 '18 11:08 sqwlly

It seems that original gitment is broken. I found a blog which provides a solution for the problem.

lan-qing avatar Dec 23 '18 10:12 lan-qing

@lan-qing 貌似是原作者的证书过期了……多谢你提供了这个连接

riteme avatar Feb 02 '19 10:02 riteme

%%%riteme

eqvpkbz avatar Feb 08 '19 08:02 eqvpkbz

Riteme orz

eqvpkbz avatar Mar 17 '19 13:03 eqvpkbz

<center>Riteme orz!</center>

将显示:

Riteme orz!

eqvpkbz avatar Mar 17 '19 13:03 eqvpkbz

麻烦大佬加个友链吧

My Blog

顺便Orz Riteme

eqvpkbz avatar Sep 07 '19 02:09 eqvpkbz

@eqvpkbz 友链已经添加了

riteme avatar Sep 10 '19 06:09 riteme

大佬好 很好奇您的数学公式渲染方式是如何做到同时使用 katex 和 mathjax 的,可以介绍一下吗?

answerend42 avatar Feb 15 '21 16:02 answerend42

@answerend42

我记得当时是 KaTeX 渲染出错只会在 console 里面报,但不会修改网页,因此可以再加载 MathJax 来渲染出错的公式。

riteme avatar Feb 16 '21 08:02 riteme

$\sum_{i=1}^n=\frac{n\times (n+1)}{2}$

jpy-cpp avatar Aug 09 '21 11:08 jpy-cpp

test

riteme avatar Dec 14 '22 12:12 riteme