AP drop for pointpillars on kitti dataset
I used the pre-trained model of pointpillars to continue training on kitti, but the AP on the validation set dropped by 6-7.Why is this?
2022-07-05 17:11:15,104 INFO Start logging
2022-07-05 17:11:15,104 INFO CUDA_VISIBLE_DEVICES=ALL
2022-07-05 17:11:15,104 INFO cfg_file cfgs/kitti_models/pointpillar_test.yaml
2022-07-05 17:11:15,104 INFO batch_size 1
2022-07-05 17:11:15,104 INFO epochs 20
2022-07-05 17:11:15,104 INFO workers 4
2022-07-05 17:11:15,104 INFO extra_tag default
2022-07-05 17:11:15,104 INFO ckpt None
2022-07-05 17:11:15,104 INFO pretrained_model /data/DL/tracking/OpenPCDet-Track/checkpoints/pointpillar_7728.pth
2022-07-05 17:11:15,104 INFO launcher none
2022-07-05 17:11:15,104 INFO tcp_port 18888
2022-07-05 17:11:15,105 INFO sync_bn False
2022-07-05 17:11:15,105 INFO fix_random_seed False
2022-07-05 17:11:15,105 INFO ckpt_save_interval 1
2022-07-05 17:11:15,105 INFO local_rank 0
2022-07-05 17:11:15,105 INFO max_ckpt_save_num 5
2022-07-05 17:11:15,105 INFO merge_all_iters_to_one_epoch False
2022-07-05 17:11:15,105 INFO set_cfgs None
2022-07-05 17:11:15,105 INFO max_waiting_mins 0
2022-07-05 17:11:15,105 INFO start_epoch 0
2022-07-05 17:11:15,105 INFO num_epochs_to_eval 5
2022-07-05 17:11:15,105 INFO save_to_file False
2022-07-05 17:11:15,105 INFO cfg.ROOT_DIR: /data/DL/3D_Detect/IA-SSD-main
2022-07-05 17:11:15,105 INFO cfg.LOCAL_RANK: 0
2022-07-05 17:11:15,105 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
2022-07-05 17:11:15,105 INFO
cfg.DATA_CONFIG = edict()
2022-07-05 17:11:15,105 INFO cfg.DATA_CONFIG.DATASET: KittiDataset
2022-07-05 17:11:15,105 INFO cfg.DATA_CONFIG.DATA_PATH: ../data/kitti
2022-07-05 17:11:15,105 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [0, -39.68, -3, 69.12, 39.68, 1]
2022-07-05 17:11:15,106 INFO
cfg.DATA_CONFIG.DATA_SPLIT = edict()
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
2022-07-05 17:11:15,106 INFO
cfg.DATA_CONFIG.INFO_PATH = edict()
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.GET_ITEM_LIST: ['points']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True
2022-07-05 17:11:15,106 INFO
cfg.DATA_CONFIG.DATA_AUGMENTOR = edict()
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.DISABLE_AUG_LIST: ['placeholder']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.DATA_AUGMENTOR.AUG_CONFIG_LIST: [{'NAME': 'gt_sampling', 'USE_ROAD_PLANE': False, 'DB_INFO_PATH': ['kitti_dbinfos_train.pkl'], 'PREPARE': {'filter_by_min_points': ['Car:5', 'Pedestrian:5', 'Cyclist:5'], 'filter_by_difficulty': [-1]}, 'SAMPLE_GROUPS': ['Car:15', 'Pedestrian:15', 'Cyclist:15'], 'NUM_POINT_FEATURES': 4, 'DATABASE_WITH_FAKELIDAR': False, 'REMOVE_EXTRA_WIDTH': [0.0, 0.0, 0.0], 'LIMIT_WHOLE_SCENE': False}, {'NAME': 'random_world_flip', 'ALONG_AXIS_LIST': ['x']}, {'NAME': 'random_world_rotation', 'WORLD_ROT_ANGLE': [-0.78539816, 0.78539816]}, {'NAME': 'random_world_scaling', 'WORLD_SCALE_RANGE': [0.95, 1.05]}]
2022-07-05 17:11:15,106 INFO
cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z', 'intensity']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z', 'intensity']
2022-07-05 17:11:15,106 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'shuffle_points', 'SHUFFLE_ENABLED': {'train': True, 'test': False}}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.16, 0.16, 4], 'MAX_POINTS_PER_VOXEL': 32, 'MAX_NUMBER_OF_VOXELS': {'train': 16000, 'test': 40000}}]
2022-07-05 17:11:15,107 INFO cfg.DATA_CONFIG.BASE_CONFIG: cfgs/dataset_configs/kitti_dataset.yaml
2022-07-05 17:11:15,107 INFO
cfg.MODEL = edict()
2022-07-05 17:11:15,107 INFO cfg.MODEL.NAME: PointPillar
2022-07-05 17:11:15,107 INFO
cfg.MODEL.VFE = edict()
2022-07-05 17:11:15,107 INFO cfg.MODEL.VFE.NAME: PillarVFE
2022-07-05 17:11:15,107 INFO cfg.MODEL.VFE.WITH_DISTANCE: False
2022-07-05 17:11:15,107 INFO cfg.MODEL.VFE.USE_ABSLOTE_XYZ: True
2022-07-05 17:11:15,107 INFO cfg.MODEL.VFE.USE_NORM: True
2022-07-05 17:11:15,107 INFO cfg.MODEL.VFE.NUM_FILTERS: [64]
2022-07-05 17:11:15,107 INFO
cfg.MODEL.MAP_TO_BEV = edict()
2022-07-05 17:11:15,107 INFO cfg.MODEL.MAP_TO_BEV.NAME: PointPillarScatter
2022-07-05 17:11:15,107 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 64
2022-07-05 17:11:15,107 INFO
cfg.MODEL.BACKBONE_2D = edict()
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.NAME: BaseBEVBackbone
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.LAYER_NUMS: [3, 5, 5]
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.LAYER_STRIDES: [2, 2, 2]
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.NUM_FILTERS: [64, 128, 256]
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.UPSAMPLE_STRIDES: [1, 2, 4]
2022-07-05 17:11:15,107 INFO cfg.MODEL.BACKBONE_2D.NUM_UPSAMPLE_FILTERS: [128, 128, 128]
2022-07-05 17:11:15,107 INFO
cfg.MODEL.DENSE_HEAD = edict()
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.NAME: AnchorHeadSingle
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
2022-07-05 17:11:15,107 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 2, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
2022-07-05 17:11:15,108 INFO
cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict()
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
2022-07-05 17:11:15,108 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict()
2022-07-05 17:11:15,108 INFO
cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 2.0
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
2022-07-05 17:11:15,108 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
2022-07-05 17:11:15,108 INFO
cfg.MODEL.POST_PROCESSING = edict()
2022-07-05 17:11:15,108 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
2022-07-05 17:11:15,108 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
2022-07-05 17:11:15,108 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
2022-07-05 17:11:15,109 INFO
cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict()
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: False
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.01
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
2022-07-05 17:11:15,109 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
2022-07-05 17:11:15,109 INFO
cfg.OPTIMIZATION = edict()
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 4
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 80
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.OPTIMIZER: adam_onecycle
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.LR: 0.003
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.01
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.MOMS: [0.95, 0.85]
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.PCT_START: 0.4
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [35, 45]
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.LR_WARMUP: False
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
2022-07-05 17:11:15,109 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
2022-07-05 17:11:15,109 INFO cfg.TAG: pointpillar_test
2022-07-05 17:11:15,109 INFO cfg.EXP_GROUP_PATH: kitti_models
2022-07-05 17:11:15,213 INFO Database filter by min points Car: 14357 => 13532
2022-07-05 17:11:15,214 INFO Database filter by min points Pedestrian: 2207 => 2168
2022-07-05 17:11:15,214 INFO Database filter by min points Cyclist: 734 => 705
2022-07-05 17:11:15,230 INFO Database filter by difficulty Car: 13532 => 10759
2022-07-05 17:11:15,232 INFO Database filter by difficulty Pedestrian: 2168 => 2075
2022-07-05 17:11:15,233 INFO Database filter by difficulty Cyclist: 705 => 581
2022-07-05 17:11:15,240 INFO Loading KITTI dataset
2022-07-05 17:11:15,320 INFO Total samples for KITTI dataset: 3712
2022-07-05 17:11:17,594 INFO ==> Loading parameters from checkpoint /data/DL/tracking/OpenPCDet-Track/checkpoints/pointpillar_7728.pth to GPU
2022-07-05 17:11:17,609 INFO ==> Done (loaded 127/127)
2022-07-05 17:11:17,610 INFO PointPillar(
(vfe): PillarVFE(
(pfn_layers): ModuleList(
(0): PFNLayer(
(linear): Linear(in_features=10, out_features=64, bias=False)
(norm): BatchNorm1d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
)
)
)
(backbone_3d): None
(map_to_bev_module): PointPillarScatter()
(pfe): None
(backbone_2d): BaseBEVBackbone(
(blocks): ModuleList(
(0): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(64, 64, kernel_size=(3, 3), stride=(2, 2), bias=False)
(2): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(9): ReLU()
(10): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11): BatchNorm2d(64, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(12): ReLU()
)
(1): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), bias=False)
(2): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(9): ReLU()
(10): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(12): ReLU()
(13): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(14): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(15): ReLU()
(16): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(17): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(18): ReLU()
)
(2): Sequential(
(0): ZeroPad2d(padding=(1, 1, 1, 1), value=0.0)
(1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), bias=False)
(2): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(3): ReLU()
(4): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(5): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(6): ReLU()
(7): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(8): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(9): ReLU()
(10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(11): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(12): ReLU()
(13): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(14): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(15): ReLU()
(16): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(17): BatchNorm2d(256, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(18): ReLU()
)
)
(deblocks): ModuleList(
(0): Sequential(
(0): ConvTranspose2d(64, 128, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(1): Sequential(
(0): ConvTranspose2d(128, 128, kernel_size=(2, 2), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
(2): Sequential(
(0): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(4, 4), bias=False)
(1): BatchNorm2d(128, eps=0.001, momentum=0.01, affine=True, track_running_stats=True)
(2): ReLU()
)
)
)
(dense_head): AnchorHeadSingle(
(cls_loss_func): SigmoidFocalClassificationLoss()
(reg_loss_func): WeightedSmoothL1Loss()
(dir_loss_func): WeightedCrossEntropyLoss()
(conv_cls): Conv2d(384, 18, kernel_size=(1, 1), stride=(1, 1))
(conv_box): Conv2d(384, 42, kernel_size=(1, 1), stride=(1, 1))
(conv_dir_cls): Conv2d(384, 12, kernel_size=(1, 1), stride=(1, 1))
)
(point_head): None
(roi_head): None
)
2022-07-05 17:11:17,611 INFO Start training kitti_models/pointpillar_test(default)
2022-07-05 19:58:07,948 INFO End training kitti_models/pointpillar_test(default)
2022-07-05 19:58:07,973 INFO Start evaluation kitti_models/pointpillar_test(default) 2022-07-05 19:58:07,976 INFO Loading KITTI dataset 2022-07-05 19:58:08,061 INFO Total samples for KITTI dataset: 3769 2022-07-05 19:58:08,063 INFO ==> Loading parameters from checkpoint /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/ckpt/checkpoint_epoch_16.pth to GPU 2022-07-05 19:58:08,099 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2022-07-05 19:58:08,102 INFO ==> Done (loaded 127/127) 2022-07-05 19:58:08,103 INFO *************** EPOCH 16 EVALUATION ***************** 2022-07-05 20:00:54,139 INFO *************** Performance of EPOCH 16 ***************** 2022-07-05 20:00:54,140 INFO Generate label finished(sec_per_example: 0.0441 second). 2022-07-05 20:00:54,140 INFO recall_roi_0.3: 0.000000 2022-07-05 20:00:54,140 INFO recall_rcnn_0.3: 0.925960 2022-07-05 20:00:54,141 INFO recall_roi_0.5: 0.000000 2022-07-05 20:00:54,141 INFO recall_rcnn_0.5: 0.858526 2022-07-05 20:00:54,142 INFO recall_roi_0.7: 0.000000 2022-07-05 20:00:54,142 INFO recall_rcnn_0.7: 0.578654 2022-07-05 20:00:54,144 INFO Average predicted number of objects(3769 samples): 16.401 2022-07-05 20:01:15,080 INFO Car [email protected], 0.70, 0.70: bbox AP:90.5750, 88.3857, 86.0865 bev AP:89.3396, 85.0189, 83.1125 3d AP:81.5228, 70.9720, 66.9649 aos AP:90.55, 88.08, 85.63 Car [email protected], 0.70, 0.70: bbox AP:95.3271, 89.1974, 88.1293 bev AP:91.5223, 86.8896, 84.2669 3d AP:83.1988, 71.7330, 67.3356 aos AP:95.30, 88.90, 87.65 Car [email protected], 0.50, 0.50: bbox AP:90.5750, 88.3857, 86.0865 bev AP:90.7142, 89.6465, 88.9790 3d AP:90.7027, 89.4347, 88.6086 aos AP:90.55, 88.08, 85.63 Car [email protected], 0.50, 0.50: bbox AP:95.3271, 89.1974, 88.1293 bev AP:95.4448, 94.0844, 91.6915 3d AP:95.5418, 93.3780, 91.1845 aos AP:95.30, 88.90, 87.65 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.1489, 57.4330, 54.7125 bev AP:58.7746, 53.0083, 49.1152 3d AP:54.1386, 48.0799, 43.7748 aos AP:47.90, 44.45, 42.29 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.0908, 57.0187, 54.2108 bev AP:58.5449, 51.8038, 47.6346 3d AP:52.5406, 46.0169, 41.5474 aos AP:45.95, 42.12, 40.02 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.1489, 57.4330, 54.7125 bev AP:69.5415, 65.7106, 62.3450 3d AP:69.2756, 64.6791, 62.0074 aos AP:47.90, 44.45, 42.29 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.0908, 57.0187, 54.2108 bev AP:70.8415, 65.7049, 62.5043 3d AP:70.4680, 65.0275, 61.7655 aos AP:45.95, 42.12, 40.02 Cyclist [email protected], 0.50, 0.50: bbox AP:85.2944, 73.5966, 70.2669 bev AP:80.8355, 64.8972, 61.2995 3d AP:77.6805, 60.1552, 55.6732 aos AP:82.94, 70.06, 66.54 Cyclist [email protected], 0.50, 0.50: bbox AP:87.9844, 74.7345, 70.7053 bev AP:82.7146, 65.4508, 61.1836 3d AP:78.4769, 59.3127, 55.3605 aos AP:85.43, 70.74, 66.63 Cyclist [email protected], 0.25, 0.25: bbox AP:85.2944, 73.5966, 70.2669 bev AP:84.4721, 71.4156, 68.0897 3d AP:84.4721, 71.4096, 68.0369 aos AP:82.94, 70.06, 66.54 Cyclist [email protected], 0.25, 0.25: bbox AP:87.9844, 74.7345, 70.7053 bev AP:87.6999, 72.7384, 68.8026 3d AP:87.6965, 72.7326, 68.7343 aos AP:85.43, 70.74, 66.63
2022-07-05 20:01:15,086 INFO Result is save to /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/eval/eval_with_train/epoch_16/val 2022-07-05 20:01:15,086 INFO Evaluation done.* 2022-07-05 20:01:15,107 INFO Epoch 16 has been evaluated 2022-07-05 20:01:15,107 INFO ==> Loading parameters from checkpoint /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/ckpt/checkpoint_epoch_17.pth to GPU 2022-07-05 20:01:15,148 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2022-07-05 20:01:15,152 INFO ==> Done (loaded 127/127) 2022-07-05 20:01:15,154 INFO *************** EPOCH 17 EVALUATION ***************** 2022-07-05 20:04:00,353 INFO *************** Performance of EPOCH 17 ***************** 2022-07-05 20:04:00,354 INFO Generate label finished(sec_per_example: 0.0438 second). 2022-07-05 20:04:00,354 INFO recall_roi_0.3: 0.000000 2022-07-05 20:04:00,354 INFO recall_rcnn_0.3: 0.926814 2022-07-05 20:04:00,354 INFO recall_roi_0.5: 0.000000 2022-07-05 20:04:00,355 INFO recall_rcnn_0.5: 0.861488 2022-07-05 20:04:00,355 INFO recall_roi_0.7: 0.000000 2022-07-05 20:04:00,355 INFO recall_rcnn_0.7: 0.597392 2022-07-05 20:04:00,358 INFO Average predicted number of objects(3769 samples): 16.236 2022-07-05 20:04:13,783 INFO Car [email protected], 0.70, 0.70: bbox AP:90.5785, 88.8793, 87.6688 bev AP:89.6335, 86.1599, 83.1422 3d AP:81.0658, 71.0352, 67.2043 aos AP:90.56, 88.61, 87.27 Car [email protected], 0.70, 0.70: bbox AP:95.3315, 91.0710, 88.6800 bev AP:91.9145, 87.4162, 84.9052 3d AP:83.4161, 72.1408, 69.3407 aos AP:95.31, 90.79, 88.28 Car [email protected], 0.50, 0.50: bbox AP:90.5785, 88.8793, 87.6688 bev AP:90.7079, 89.9143, 89.3040 3d AP:90.7079, 89.7474, 88.9866 aos AP:90.56, 88.61, 87.27 Car [email protected], 0.50, 0.50: bbox AP:95.3315, 91.0710, 88.6800 bev AP:95.5784, 94.4501, 93.7532 3d AP:95.5344, 93.9736, 91.5970 aos AP:95.31, 90.79, 88.28 Pedestrian [email protected], 0.50, 0.50: bbox AP:63.6979, 59.3309, 56.4585 bev AP:60.7070, 54.7192, 51.0262 3d AP:55.8270, 49.4805, 45.6247 aos AP:46.50, 42.49, 40.02 Pedestrian [email protected], 0.50, 0.50: bbox AP:63.8552, 59.0659, 55.9743 bev AP:60.7116, 53.7687, 49.6443 3d AP:55.1246, 47.9774, 43.4279 aos AP:45.79, 41.56, 39.21 Pedestrian [email protected], 0.25, 0.25: bbox AP:63.6979, 59.3309, 56.4585 bev AP:71.4658, 67.2748, 63.6635 3d AP:71.4290, 66.4444, 63.3790 aos AP:46.50, 42.49, 40.02 Pedestrian [email protected], 0.25, 0.25: bbox AP:63.8552, 59.0659, 55.9743 bev AP:72.3396, 67.4012, 64.0901 3d AP:72.3000, 66.9662, 63.5221 aos AP:45.79, 41.56, 39.21 Cyclist [email protected], 0.50, 0.50: bbox AP:85.7287, 76.4986, 72.3026 bev AP:83.8341, 68.6811, 65.1311 3d AP:80.0190, 62.2262, 58.2070 aos AP:84.81, 74.10, 69.85 Cyclist [email protected], 0.50, 0.50: bbox AP:89.4769, 77.1309, 73.2237 bev AP:87.0907, 70.0608, 65.4785 3d AP:80.3351, 61.9782, 57.6415 aos AP:88.36, 74.64, 70.55 Cyclist [email protected], 0.25, 0.25: bbox AP:85.7287, 76.4986, 72.3026 bev AP:87.8492, 74.8887, 70.3792 3d AP:87.8440, 74.8380, 70.3661 aos AP:84.81, 74.10, 69.85 Cyclist [email protected], 0.25, 0.25: bbox AP:89.4769, 77.1309, 73.2237 bev AP:89.8614, 75.5202, 71.1347 3d AP:89.8588, 75.4845, 71.0164 aos AP:88.36, 74.64, 70.55
2022-07-05 20:04:13,783 INFO Result is save to /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/eval/eval_with_train/epoch_17/val 2022-07-05 20:04:13,783 INFO Evaluation done.* 2022-07-05 20:04:13,805 INFO Epoch 17 has been evaluated 2022-07-05 20:04:13,805 INFO ==> Loading parameters from checkpoint /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/ckpt/checkpoint_epoch_18.pth to GPU 2022-07-05 20:04:13,844 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2022-07-05 20:04:13,848 INFO ==> Done (loaded 127/127) 2022-07-05 20:04:13,850 INFO *************** EPOCH 18 EVALUATION ***************** 2022-07-05 20:06:58,857 INFO *************** Performance of EPOCH 18 ***************** 2022-07-05 20:06:58,857 INFO Generate label finished(sec_per_example: 0.0438 second). 2022-07-05 20:06:58,858 INFO recall_roi_0.3: 0.000000 2022-07-05 20:06:58,858 INFO recall_rcnn_0.3: 0.932225 2022-07-05 20:06:58,858 INFO recall_roi_0.5: 0.000000 2022-07-05 20:06:58,858 INFO recall_rcnn_0.5: 0.867810 2022-07-05 20:06:58,858 INFO recall_roi_0.7: 0.000000 2022-07-05 20:06:58,858 INFO recall_rcnn_0.7: 0.604852 2022-07-05 20:06:58,860 INFO Average predicted number of objects(3769 samples): 20.460 2022-07-05 20:07:13,313 INFO Car [email protected], 0.70, 0.70: bbox AP:90.5744, 88.5590, 87.2596 bev AP:89.4479, 84.4622, 83.1055 3d AP:81.7456, 72.2882, 67.6867 aos AP:90.56, 88.33, 86.91 Car [email protected], 0.70, 0.70: bbox AP:95.4368, 89.2235, 88.4704 bev AP:91.9770, 86.8301, 84.8105 3d AP:83.6588, 73.5420, 69.8167 aos AP:95.42, 88.99, 88.12 Car [email protected], 0.50, 0.50: bbox AP:90.5744, 88.5590, 87.2596 bev AP:90.7035, 89.7046, 89.0777 3d AP:90.7035, 89.5184, 88.8153 aos AP:90.56, 88.33, 86.91 Car [email protected], 0.50, 0.50: bbox AP:95.4368, 89.2235, 88.4704 bev AP:95.7004, 93.9564, 93.2297 3d AP:95.6537, 92.9416, 91.3200 aos AP:95.42, 88.99, 88.12 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.2947, 57.8193, 55.8970 bev AP:59.8191, 53.7009, 50.0723 3d AP:55.3460, 48.7542, 45.0069 aos AP:44.89, 41.12, 39.37 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.2131, 57.5512, 54.9309 bev AP:59.4325, 52.6783, 48.5984 3d AP:54.3884, 47.3121, 42.7932 aos AP:44.04, 40.39, 38.47 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.2947, 57.8193, 55.8970 bev AP:68.9931, 65.1805, 62.3831 3d AP:68.9215, 64.7851, 62.0722 aos AP:44.89, 41.12, 39.37 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.2131, 57.5512, 54.9309 bev AP:70.0013, 65.5867, 62.4833 3d AP:69.9280, 65.0688, 62.0148 aos AP:44.04, 40.39, 38.47 Cyclist [email protected], 0.50, 0.50: bbox AP:85.2178, 74.3177, 70.5701 bev AP:82.6834, 67.2174, 62.8096 3d AP:79.3809, 61.1168, 57.2711 aos AP:83.56, 71.60, 67.81 Cyclist [email protected], 0.50, 0.50: bbox AP:88.7532, 75.6581, 71.3898 bev AP:85.4843, 67.6186, 63.1074 3d AP:80.2613, 60.9532, 56.9327 aos AP:86.96, 72.61, 68.19 Cyclist [email protected], 0.25, 0.25: bbox AP:85.2178, 74.3177, 70.5701 bev AP:85.0907, 72.4793, 69.4119 3d AP:85.0907, 72.2337, 68.6059 aos AP:83.56, 71.60, 67.81 Cyclist [email protected], 0.25, 0.25: bbox AP:88.7532, 75.6581, 71.3898 bev AP:88.4911, 73.5748, 69.5934 3d AP:88.4861, 73.4360, 69.2510 aos AP:86.96, 72.61, 68.19
2022-07-05 20:07:13,314 INFO Result is save to /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/eval/eval_with_train/epoch_18/val 2022-07-05 20:07:13,314 INFO Evaluation done.* 2022-07-05 20:07:13,336 INFO Epoch 18 has been evaluated 2022-07-05 20:07:13,336 INFO ==> Loading parameters from checkpoint /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/ckpt/checkpoint_epoch_19.pth to GPU 2022-07-05 20:07:13,377 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2022-07-05 20:07:13,381 INFO ==> Done (loaded 127/127) 2022-07-05 20:07:13,382 INFO *************** EPOCH 19 EVALUATION ***************** 2022-07-05 20:09:58,593 INFO *************** Performance of EPOCH 19 ***************** 2022-07-05 20:09:58,593 INFO Generate label finished(sec_per_example: 0.0438 second). 2022-07-05 20:09:58,594 INFO recall_roi_0.3: 0.000000 2022-07-05 20:09:58,594 INFO recall_rcnn_0.3: 0.931769 2022-07-05 20:09:58,594 INFO recall_roi_0.5: 0.000000 2022-07-05 20:09:58,594 INFO recall_rcnn_0.5: 0.866784 2022-07-05 20:09:58,594 INFO recall_roi_0.7: 0.000000 2022-07-05 20:09:58,594 INFO recall_rcnn_0.7: 0.608156 2022-07-05 20:09:58,596 INFO Average predicted number of objects(3769 samples): 18.737 2022-07-05 20:10:12,294 INFO Car [email protected], 0.70, 0.70: bbox AP:90.6179, 88.7373, 87.3052 bev AP:89.5666, 85.3960, 83.2504 3d AP:82.8452, 74.1180, 71.2733 aos AP:90.60, 88.47, 86.86 Car [email protected], 0.70, 0.70: bbox AP:95.6401, 89.3999, 88.5563 bev AP:92.1471, 87.2365, 84.9539 3d AP:84.6978, 74.5439, 71.1697 aos AP:95.61, 89.14, 88.12 Car [email protected], 0.50, 0.50: bbox AP:90.6179, 88.7373, 87.3052 bev AP:90.7513, 89.8628, 89.1450 3d AP:90.7479, 89.6432, 88.8636 aos AP:90.60, 88.47, 86.86 Car [email protected], 0.50, 0.50: bbox AP:95.6401, 89.3999, 88.5563 bev AP:95.9663, 94.2266, 93.2518 3d AP:95.9216, 92.1401, 91.4740 aos AP:95.61, 89.14, 88.12 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.6270, 57.4009, 54.9493 bev AP:59.2799, 52.9963, 49.1072 3d AP:54.4392, 47.5878, 43.3693 aos AP:46.37, 41.91, 40.07 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.4103, 57.0318, 54.2652 bev AP:59.0257, 51.7396, 47.7057 3d AP:53.1719, 45.6963, 40.9132 aos AP:45.52, 40.83, 38.68 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.6270, 57.4009, 54.9493 bev AP:69.5815, 64.9131, 61.7862 3d AP:69.5559, 64.7573, 61.4401 aos AP:46.37, 41.91, 40.07 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.4103, 57.0318, 54.2652 bev AP:70.2714, 65.0817, 61.9881 3d AP:70.2412, 64.8066, 61.5829 aos AP:45.52, 40.83, 38.68 Cyclist [email protected], 0.50, 0.50: bbox AP:85.3952, 73.6672, 69.7396 bev AP:83.3018, 66.9391, 62.3290 3d AP:80.1782, 61.1657, 57.9421 aos AP:83.98, 70.92, 66.84 Cyclist [email protected], 0.50, 0.50: bbox AP:89.3106, 74.9441, 70.8156 bev AP:86.6693, 66.9877, 62.5633 3d AP:80.9615, 61.1776, 57.3112 aos AP:87.69, 71.83, 67.59 Cyclist [email protected], 0.25, 0.25: bbox AP:85.3952, 73.6672, 69.7396 bev AP:85.1261, 72.5620, 68.8019 3d AP:85.1261, 72.3222, 68.7696 aos AP:83.98, 70.92, 66.84 Cyclist [email protected], 0.25, 0.25: bbox AP:89.3106, 74.9441, 70.8156 bev AP:89.4130, 73.4385, 69.3648 3d AP:89.4114, 73.3245, 69.2916 aos AP:87.69, 71.83, 67.59
2022-07-05 20:10:12,298 INFO Result is save to /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/eval/eval_with_train/epoch_19/val 2022-07-05 20:10:12,298 INFO Evaluation done.* 2022-07-05 20:10:12,321 INFO Epoch 19 has been evaluated 2022-07-05 20:10:12,321 INFO ==> Loading parameters from checkpoint /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/ckpt/checkpoint_epoch_20.pth to GPU 2022-07-05 20:10:12,367 INFO ==> Checkpoint trained from version: pcdet+0.5.2+0000000 2022-07-05 20:10:12,371 INFO ==> Done (loaded 127/127) 2022-07-05 20:10:12,373 INFO *************** EPOCH 20 EVALUATION ***************** 2022-07-05 20:12:57,972 INFO *************** Performance of EPOCH 20 ***************** 2022-07-05 20:12:57,972 INFO Generate label finished(sec_per_example: 0.0439 second). 2022-07-05 20:12:57,972 INFO recall_roi_0.3: 0.000000 2022-07-05 20:12:57,972 INFO recall_rcnn_0.3: 0.931142 2022-07-05 20:12:57,972 INFO recall_roi_0.5: 0.000000 2022-07-05 20:12:57,972 INFO recall_rcnn_0.5: 0.865759 2022-07-05 20:12:57,972 INFO recall_roi_0.7: 0.000000 2022-07-05 20:12:57,972 INFO recall_rcnn_0.7: 0.607529 2022-07-05 20:12:57,975 INFO Average predicted number of objects(3769 samples): 18.543 2022-07-05 20:13:11,697 INFO Car [email protected], 0.70, 0.70: bbox AP:90.6512, 88.8421, 87.5406 bev AP:89.6233, 85.9728, 83.3138 3d AP:83.1098, 74.3727, 71.4245 aos AP:90.63, 88.58, 87.14 Car [email protected], 0.70, 0.70: bbox AP:95.7790, 89.5114, 88.6559 bev AP:92.2252, 87.4551, 85.0330 3d AP:85.0417, 74.7527, 71.8429 aos AP:95.76, 89.27, 88.26 Car [email protected], 0.50, 0.50: bbox AP:90.6512, 88.8421, 87.5406 bev AP:90.7660, 89.8675, 89.2209 3d AP:90.7660, 89.6894, 88.9294 aos AP:90.63, 88.58, 87.14 Car [email protected], 0.50, 0.50: bbox AP:95.7790, 89.5114, 88.6559 bev AP:96.0746, 94.3300, 93.3327 3d AP:96.0346, 93.2606, 91.5472 aos AP:95.76, 89.27, 88.26 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.1122, 56.9283, 54.7295 bev AP:58.7824, 52.3828, 48.7614 3d AP:54.5900, 47.5613, 43.5874 aos AP:46.95, 42.57, 40.66 Pedestrian [email protected], 0.50, 0.50: bbox AP:62.0461, 56.7338, 53.9252 bev AP:58.3611, 51.3068, 47.0826 3d AP:53.3105, 45.8904, 41.1278 aos AP:46.27, 41.65, 39.26 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.1122, 56.9283, 54.7295 bev AP:69.5566, 64.8114, 61.8084 3d AP:69.5056, 63.9941, 61.3358 aos AP:46.95, 42.57, 40.66 Pedestrian [email protected], 0.25, 0.25: bbox AP:62.0461, 56.7338, 53.9252 bev AP:70.4623, 64.9483, 61.8657 3d AP:70.2710, 64.4790, 61.1392 aos AP:46.27, 41.65, 39.26 Cyclist [email protected], 0.50, 0.50: bbox AP:85.6064, 74.1578, 70.1859 bev AP:82.8039, 68.0793, 63.9360 3d AP:79.3475, 60.9698, 58.0594 aos AP:84.17, 71.43, 67.34 Cyclist [email protected], 0.50, 0.50: bbox AP:89.4778, 75.6134, 71.3811 bev AP:85.2932, 68.3946, 63.8085 3d AP:80.0532, 61.2597, 57.1948 aos AP:87.80, 72.61, 68.10 Cyclist [email protected], 0.25, 0.25: bbox AP:85.6064, 74.1578, 70.1859 bev AP:85.5461, 73.5042, 69.9655 3d AP:85.5461, 72.9736, 68.9360 aos AP:84.17, 71.43, 67.34 Cyclist [email protected], 0.25, 0.25: bbox AP:89.4778, 75.6134, 71.3811 bev AP:89.4346, 74.2956, 70.4806 3d AP:89.4318, 74.0075, 69.9389 aos AP:87.80, 72.61, 68.10
2022-07-05 20:13:11,697 INFO Result is save to /data/DL/3D_Detect/IA-SSD-main/output/kitti_models/pointpillar_test/default/eval/eval_with_train/epoch_20/val 2022-07-05 20:13:11,697 INFO Evaluation done.* 2022-07-05 20:13:11,723 INFO Epoch 20 has been evaluated 2022-07-05 20:13:41,755 INFO End evaluation kitti_models/pointpillar_test(default)
Probably it's because your initial learning rate is too high (cfg.OPTIMIZATION.LR: 0.003) and the supervision signals are too strong. This might lead to you exiting the minima reached by the initial training and land in a worse one.
You could try to start with a smaller LR and test if things improve.
This issue is stale because it has been open for 30 days with no activity.
This issue was closed because it has been inactive for 14 days since being marked as stale.