LibRecommender
LibRecommender copied to clipboard
reg parameter example
Hello! I am trying to implement SVD++, and I have an issue. I would like to add parameter reg (as regularization penalty), but I couldn't find any examples. Would be great if there are some!
Just set the reg parameter:
svdpp = SVDpp(..., reg=0.1)
@massquantity thank you for fast reply! is it possible to use different regularization parameters for different values (Pi, Qu, bu, bi, yj)?
In that case you can change the source code in LibRecommender/libreco/algorithms/svdpp.py , starting from line 79:
self.bu_var = tf.get_variable(name="bu_var", shape=[self.n_users],
initializer=tf_zeros,
regularizer=self.reg)
self.bi_var = tf.get_variable(name="bi_var", shape=[self.n_items],
initializer=tf_zeros,
regularizer=self.reg)
self.pu_var = tf.get_variable(name="pu_var",
shape=[self.n_users, self.embed_size],
initializer=tf_truncated_normal(
0.0, 0.03),
regularizer=self.reg)
self.qi_var = tf.get_variable(name="qi_var",
shape=[self.n_items, self.embed_size],
initializer=tf_truncated_normal(
0.0, 0.03),
regularizer=self.reg)
yj_var = tf.get_variable(name="yj_var",
shape=[self.n_items, self.embed_size],
initializer=tf_truncated_normal(0.0, 0.03),
regularizer=self.reg)
Change all the regularizer=self.reg to the value you want.