CBAM.PyTorch
CBAM.PyTorch copied to clipboard
I think there are some mistakes
After applying Channel Attention Module, maybe it would be better to apply a convolution layer in order to modify the channels to the original value (usually 3 channels), instead of applying Spatial Attention Module instantly. Or Spatial Attention Module can't make sense.
My Advice: class Bottleneck(nn.Module):
def __init__(self, inplanes, planes, stride=1, downsample=None,expansion=4):
super(Bottleneck, self).__init__()
self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
self.bn1 = nn.BatchNorm2d(planes)
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(planes)
self.conv3 = nn.Conv2d(planes, planes * expansion, kernel_size=1, bias=False)
self.bn3 = nn.BatchNorm2d(planes * expansion)
self.relu = nn.ReLU(inplace=True)
self.conv4=nn.Conv2d(planes * expansion, inplanes, kernel_size=1, bias=False)
self.ca = ChannelAttention(planes * expansion)
self.sa = SpatialAttention()
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.relu(out)
out = self.conv3(out)
out = self.bn3(out)
out = self.ca(out) * out
out=self.conv4(out)
out = self.sa(out) * out
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out