feat(CategoryTheory): criterion for `ObjectProperty.ind` in finitely accessible categories
We show that if C is finitely accessible and P implies finitely presentable, then X
satisfies ind P if and only if every morphism Z ⟶ X from a finitely presentable object
factors via an object satisfying W. We also add the analogous statement for morphism properties.
From Proetale.
- [x] depends on: #33001
PR summary 99bc1514ad
Import changes exceeding 2%
| % | File |
|---|---|
| +5.71% | Mathlib.CategoryTheory.MorphismProperty.Ind |
| +8.08% | Mathlib.CategoryTheory.ObjectProperty.Ind |
Import changes for modified files
Dependency changes
| File | Base Count | Head Count | Change |
|---|---|---|---|
| Mathlib.CategoryTheory.ObjectProperty.Ind | 743 | 803 | +60 (+8.08%) |
| Mathlib.CategoryTheory.MorphismProperty.Ind | 770 | 814 | +44 (+5.71%) |
| Mathlib.CategoryTheory.Presentable.Dense | 798 | 801 | +3 (+0.38%) |
Import changes for all files
| Files | Import difference |
|---|---|
Mathlib.CategoryTheory.Presentable.Dense |
3 |
Mathlib.CategoryTheory.MorphismProperty.Ind |
44 |
Mathlib.CategoryTheory.ObjectProperty.Ind |
60 |
Declarations diff
+ IsFinitelyAccessibleCategory
+ IsLocallyFinitelyPresentable
+ ObjectProperty.isFinitelyPresentable_eq_isCardinalPresentable
+ instance (X : (ObjectProperty.isFinitelyPresentable.{w} C).FullSubcategory) :
+ instance [IsFinitelyAccessibleCategory.{w} C] (X : C) :
+ of_essentiallySmall_index
++ ind_iff_exists
++ instance [IsFinitelyAccessibleCategory.{w} C] :
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh contains some details about this script.
No changes to technical debt.
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relativevalue is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolutevalue is therelativevalue divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
This PR/issue depends on:
- ~~leanprover-community/mathlib4#33001~~ By Dependent Issues (🤖). Happy coding!
This pull request has conflicts, please merge master and resolve them.
Thanks!
maintainer merge
🚀 Pull request has been placed on the maintainer queue by robin-carlier.
Thanks!
bors merge