mathlib4 icon indicating copy to clipboard operation
mathlib4 copied to clipboard

feat(Algebra): depth of QuotSMulTop

Open Thmoas-Guan opened this issue 7 months ago • 6 comments

In this PR, we proved for a local ring R and a finitely generated R module M N, IsSMulRegular M x and x ∈ Module.annihilator R N, then depth(N, M/xM) + 1 = depth(N, M), and its corollary for quotient regular seqence.


  • [ ] depends on: #26214

Open in Gitpod

Thmoas-Guan avatar Jun 20 '25 12:06 Thmoas-Guan

This PR is originally from #25109

Thmoas-Guan avatar Jun 20 '25 12:06 Thmoas-Guan

This PR/issue depends on:

PR summary 86622378a5

Import changes exceeding 2%

% File
+42.10% Mathlib.RingTheory.Regular.Category
+26.90% Mathlib.RingTheory.Regular.Depth

Import changes for modified files

Dependency changes

File Base Count Head Count Change
Mathlib.RingTheory.Regular.Category 1209 1718 +509 (+42.10%)
Mathlib.RingTheory.Regular.Depth 1569 1991 +422 (+26.90%)
Import changes for all files
Files Import difference
Mathlib.RingTheory.Regular.Depth 422
Mathlib.RingTheory.Regular.Category 509

Declarations diff

+ Ideal.depth + Ideal.depth_eq_of_iso + Ideal.depth_quotSMulTop_succ_eq_moduleDepth + Ideal.quotient_smul_top_lt_of_le_smul_top + IsLocalRing.depth + IsLocalRing.depth_eq_of_algebraMap_surjective + IsLocalRing.depth_eq_of_iso + IsLocalRing.depth_eq_of_ringEquiv + IsLocalRing.depth_eq_sSup_length_regular + IsLocalRing.depth_quotSMulTop_succ_eq_moduleDepth + IsLocalRing.depth_quotient_regular_sequence_add_length_eq_depth + IsLocalRing.depth_quotient_regular_succ_eq_depth + IsLocalRing.depth_quotient_span_regular_succ_eq_depth + IsLocalRing.ideal_depth_eq_sSup_length_regular + IsLocalRing.ideal_depth_le_depth + Submodule.comap_lt_top_of_lt_range + Submodule.smul_top_eq_comap_smul_top_of_surjective + depth_quotient_regular_sequence_add_length_eq_depth + exists_isRegular_of_exists_subsingleton_ext + exists_isRegular_tfae + ext_subsingleton_of_exists_isRegular + ext_subsingleton_of_lt_moduleDepth + ideal_depth_quotient_regular_sequence_add_length_eq_ideal_depth + moduleDepth + moduleDepth_eq_depth_of_supp_eq + moduleDepth_eq_find + moduleDepth_eq_iff + moduleDepth_eq_moduleDepth_shrink + moduleDepth_eq_of_iso_fst + moduleDepth_eq_of_iso_snd + moduleDepth_eq_sSup_length_regular + moduleDepth_eq_sup_nat + moduleDepth_eq_top_iff + moduleDepth_eq_zero_of_hom_nontrivial + moduleDepth_ge_min_of_shortExact_fst_fst + moduleDepth_ge_min_of_shortExact_fst_snd + moduleDepth_ge_min_of_shortExact_snd_fst + moduleDepth_ge_min_of_shortExact_snd_snd + moduleDepth_ge_min_of_shortExact_trd_fst + moduleDepth_ge_min_of_shortExact_trd_snd + moduleDepth_lt_top_iff + moduleDepth_quotSMulTop_succ_eq_moduleDepth + moduleDepth_quotient_regular_sequence_add_length_eq_moduleDepth + mono_postcomp_mk₀_of_mono + mono_precomp_mk₀_of_epi + postcomp_mk₀_injective_of_mono + pow_mono_of_mono + precomp_mk₀_injective_of_epi + ring_depth_invariant + ring_depth_uLift + smul_id_postcomp_eq_zero_of_mem_ann

You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>

## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>

The doc-module for script/declarations_diff.sh contains some details about this script.


No changes to technical debt.

You can run this locally as

./scripts/technical-debt-metrics.sh pr_summary
  • The relative value is the weighted sum of the differences with weight given by the inverse of the current value of the statistic.
  • The absolute value is the relative value divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).

github-actions[bot] avatar Jun 20 '25 12:06 github-actions[bot]

This pull request has conflicts, please merge master and resolve them.

This pull request has conflicts, please merge master and resolve them.

This pull request has conflicts, please merge master and resolve them.