feat(Algebra): depth of QuotSMulTop
In this PR, we proved for a local ring R and a finitely generated R module M N, IsSMulRegular M x and x ∈ Module.annihilator R N, then depth(N, M/xM) + 1 = depth(N, M), and its corollary for quotient regular seqence.
- [ ] depends on: #26214
This PR is originally from #25109
This PR/issue depends on:
- leanprover-community/mathlib4#26214 By Dependent Issues (🤖). Happy coding!
PR summary 86622378a5
Import changes exceeding 2%
| % | File |
|---|---|
| +42.10% | Mathlib.RingTheory.Regular.Category |
| +26.90% | Mathlib.RingTheory.Regular.Depth |
Import changes for modified files
Dependency changes
| File | Base Count | Head Count | Change |
|---|---|---|---|
| Mathlib.RingTheory.Regular.Category | 1209 | 1718 | +509 (+42.10%) |
| Mathlib.RingTheory.Regular.Depth | 1569 | 1991 | +422 (+26.90%) |
Import changes for all files
| Files | Import difference |
|---|---|
Mathlib.RingTheory.Regular.Depth |
422 |
Mathlib.RingTheory.Regular.Category |
509 |
Declarations diff
+ Ideal.depth
+ Ideal.depth_eq_of_iso
+ Ideal.depth_quotSMulTop_succ_eq_moduleDepth
+ Ideal.quotient_smul_top_lt_of_le_smul_top
+ IsLocalRing.depth
+ IsLocalRing.depth_eq_of_algebraMap_surjective
+ IsLocalRing.depth_eq_of_iso
+ IsLocalRing.depth_eq_of_ringEquiv
+ IsLocalRing.depth_eq_sSup_length_regular
+ IsLocalRing.depth_quotSMulTop_succ_eq_moduleDepth
+ IsLocalRing.depth_quotient_regular_sequence_add_length_eq_depth
+ IsLocalRing.depth_quotient_regular_succ_eq_depth
+ IsLocalRing.depth_quotient_span_regular_succ_eq_depth
+ IsLocalRing.ideal_depth_eq_sSup_length_regular
+ IsLocalRing.ideal_depth_le_depth
+ Submodule.comap_lt_top_of_lt_range
+ Submodule.smul_top_eq_comap_smul_top_of_surjective
+ depth_quotient_regular_sequence_add_length_eq_depth
+ exists_isRegular_of_exists_subsingleton_ext
+ exists_isRegular_tfae
+ ext_subsingleton_of_exists_isRegular
+ ext_subsingleton_of_lt_moduleDepth
+ ideal_depth_quotient_regular_sequence_add_length_eq_ideal_depth
+ moduleDepth
+ moduleDepth_eq_depth_of_supp_eq
+ moduleDepth_eq_find
+ moduleDepth_eq_iff
+ moduleDepth_eq_moduleDepth_shrink
+ moduleDepth_eq_of_iso_fst
+ moduleDepth_eq_of_iso_snd
+ moduleDepth_eq_sSup_length_regular
+ moduleDepth_eq_sup_nat
+ moduleDepth_eq_top_iff
+ moduleDepth_eq_zero_of_hom_nontrivial
+ moduleDepth_ge_min_of_shortExact_fst_fst
+ moduleDepth_ge_min_of_shortExact_fst_snd
+ moduleDepth_ge_min_of_shortExact_snd_fst
+ moduleDepth_ge_min_of_shortExact_snd_snd
+ moduleDepth_ge_min_of_shortExact_trd_fst
+ moduleDepth_ge_min_of_shortExact_trd_snd
+ moduleDepth_lt_top_iff
+ moduleDepth_quotSMulTop_succ_eq_moduleDepth
+ moduleDepth_quotient_regular_sequence_add_length_eq_moduleDepth
+ mono_postcomp_mk₀_of_mono
+ mono_precomp_mk₀_of_epi
+ postcomp_mk₀_injective_of_mono
+ pow_mono_of_mono
+ precomp_mk₀_injective_of_epi
+ ring_depth_invariant
+ ring_depth_uLift
+ smul_id_postcomp_eq_zero_of_mem_ann
You can run this locally as follows
## summary with just the declaration names:
./scripts/declarations_diff.sh <optional_commit>
## more verbose report:
./scripts/declarations_diff.sh long <optional_commit>
The doc-module for script/declarations_diff.sh contains some details about this script.
No changes to technical debt.
You can run this locally as
./scripts/technical-debt-metrics.sh pr_summary
- The
relativevalue is the weighted sum of the differences with weight given by the inverse of the current value of the statistic. - The
absolutevalue is therelativevalue divided by the total sum of the inverses of the current values (i.e. the weighted average of the differences).
This pull request has conflicts, please merge master and resolve them.
This pull request has conflicts, please merge master and resolve them.
This pull request has conflicts, please merge master and resolve them.