Flow generator must be greater than one issue on Colab
Hello,
Running DeepEtho on colab and encountered an issue when running inference with the feature extractor. The flow generator and feature extractor trained just fine. Here's the output:
`[2022-06-07 11:02:42,603] INFO [deepethogram.projects.convert_config_paths_to_absolute:1135] cwd in absolute: /content/drive/.shortcut-targets-by-id/1kut2K2H4KJzoLtQDQw0aEwgz1sNDm1iK/EggLay_deepethogram/models/220607_110218_feature_extractor_train [2022-06-07 11:02:42,609] INFO [deepethogram.projects.convert_config_paths_to_absolute:1178] after absolute: {'class_names': ['background', 'per', 'bend', 'burrow', 'drag', 'groom', 'egg'], 'config_file': '/content/drive/MyDrive/CajalQaB/EggLay_deepethogram/project_config.yaml', 'data_path': '/content/drive/MyDrive/CajalQaB/EggLay_deepethogram/DATA', 'labeler': None, 'model_path': '/content/drive/MyDrive/CajalQaB/EggLay_deepethogram/models', 'name': 'EggLay', 'path': '/content/drive/MyDrive/CajalQaB/EggLay_deepethogram', 'pretrained_path': '/content/drive/MyDrive/CajalQaB/EggLay_deepethogram/models/pretrained_models'} [2022-06-07 11:02:42,631] INFO [deepethogram.feature_extractor.inference.feature_extractor_inference:473] args: /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py -f /root/.local/share/jupyter/runtime/kernel-e79915f1-c015-4919-8ffa-64edae425a9d.json [2022-06-07 11:02:42,633] INFO [deepethogram.feature_extractor.inference.feature_extractor_inference:475] configuration used in inference: [2022-06-07 11:02:42,648] INFO [deepethogram.feature_extractor.inference.feature_extractor_inference:476] split: reload: true file: null train_val_test:
- 0.8
- 0.2
- 0.0 compute: fp16: false num_workers: 2 batch_size: 32 min_batch_size: 8 max_batch_size: 512 distributed: false gpu_id: 0 dali: false metrics_workers: 0 reload: overwrite_cfg: false latest: false notes: null log: level: info augs: brightness: 0.25 contrast: 0.1 hue: 0.1 saturation: 0.1 color_p: 0.5 grayscale: 0.5 crop_size: null resize:
- 224
- 224
dali: false
random_resize: false
pad: null
LR: 0.5
UD: 0.0
degrees: 10
normalization:
'N': 270317520
mean:
- 0.6266480327776516
- 0.6266480327776516
- 0.6266480327776516 std:
- 0.14578843279585693
- 0.14578843279585693
- 0.14578843279585693 feature_extractor: arch: resnet18 fusion: average sampler: null final_bn: false sampling_ratio: null final_activation: sigmoid dropout_p: 0.25 n_flows: 10 n_rgb: 1 curriculum: false inputs: both weights: latest n_flow: 10 train: steps_per_epoch: train: 1000 val: 200 test: 20 num_epochs: 10 loss_weight_exp: 1.0 flow_generator: type: flow_generator flow_loss: MotionNet flow_max: 10 input_images: 11 flow_sparsity: false smooth_weight_multiplier: 1.0 sparsity_weight: 0.0 loss: MotionNet max: 5 n_rgb: 11 arch: TinyMotionNet weights: latest 'n': 10 inference: directory_list: all ignore_error: false overwrite: true use_loaded_model_cfg: true postprocessor: type: min_bout_per_behavior min_bout_length: 1 cmap: deepethogram control_arrow_jump: 31 label_view_width: 31 prediction_opacity: 0.2 project: class_names:
- background
- per
- bend
- burrow
- drag
- groom
- egg config_file: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram/project_config.yaml data_path: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram/DATA labeler: null model_path: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram/models name: EggLay path: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram pretrained_path: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram/models/pretrained_models run: type: inference model: feature_extractor dir: /content/drive/MyDrive/CajalQaB/EggLay_deepethogram/models/220607_110242_feature_extractor_inference sequence: filter_length: 15 unlabeled_alpha: 0.1 vertical_arrow_jump: 3
[2022-06-07 11:02:42,651] INFO [deepethogram.feature_extractor.inference.feature_extractor_inference:481] Latent name used in HDF5 file: resnet18
AssertionError Traceback (most recent call last)
/usr/local/lib/python3.7/dist-packages/deepethogram/feature_extractor/inference.py in feature_extractor_inference(cfg) 503 assert os.path.isdir(directory), 'Not a directory: {}'.format(directory) 504 record = projects.get_record_from_subdir(directory) --> 505 assert record['rgb'] is not None 506 records.append(record) 507 assert cfg.feature_extractor.n_flows + 1 == cfg.flow_generator.n_rgb, 'Flow generator inputs must be one greater ' \
AssertionError:`
What could this be? already tried restarted the runtime. Thanks in advance!
Hello,
I just re-ran the Colab with the latest version of DeepEthogram. All works well for me.
In the cfg file in your logs above, the cfg.feature_extractor.n_flows is equal to 10, and cfg.flow_generator.n_rgb is equal to 11. I'm not sure how this is happening for you.
Before you run inference, can you just run this line in your notebook: print(OmegaConf.to_yaml(cfg))
Hi Jim! I confirmed cfg.feature_extractor.n_flows == 10 and cfg.flow_generator.n_rgb == 11. I now get an Assertion error: