spring-ai-summary icon indicating copy to clipboard operation
spring-ai-summary copied to clipboard

Maybe we need consider intergration MP4 as vector storage

Open spring-ai-tech opened this issue 8 months ago • 0 comments

introduction

Specifically, it employs an ingenious encoding scheme: each block of text is converted into a QR code image, and these images are assembled as frames in a video. By leveraging MP4’s video compression algorithms, this approach achieves a compression ratio up to 10 times higher than traditional text storage methods. Meanwhile, the system generates a companion JSON index file that records the position of each text block within the video.

The most innovative part lies in its semantic search capability: it uses sentence-transformers to generate text embeddings and FAISS for similarity search. From a technical architecture standpoint, Memvid is essentially a hybrid system—video files are used to store the raw data, while a vector index powers efficient retrieval. In effect, this means you can fit an entire library into a single MP4 file and instantly locate any piece of information using natural language.

具体来说,它采用了一种巧妙的编码方案:每个文本块被转换成QR码图像,这些图像成为视频的帧。通过利用MP4的视频压缩算法,可以实现比传统文本存储高10倍的压缩率。同时,系统会生成一个配套的JSON索引文件,记录每个文本块在视频中的位置信息。最关键的是,它使用sentence-transformers生成文本嵌入,通过FAISS进行相似度计算,实现语义搜索功能。从技术架构来看,Memvid实际上是一个混合系统:视频文件负责存储原始数据,而向量索引负责实现快速检索。这意味着,你可以把整个图书馆装进一个MP4文件里,然后用自然语言瞬间找到任何信息。

https://github.com/Olow304/memvid

spring-ai-tech avatar Jun 08 '25 05:06 spring-ai-tech