diffusers
diffusers copied to clipboard
Add Finegrained FP8
What does this PR do?
Adds finegrained FP8
The docs for this PR live here. All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update.
Just for bookkeeping, relaying stuff from our DM.
I had to make the following changes to make this PR work:
Expand
diff --git a/src/diffusers/models/modeling_utils.py b/src/diffusers/models/modeling_utils.py
index 638c5fbfb..737525143 100644
--- a/src/diffusers/models/modeling_utils.py
+++ b/src/diffusers/models/modeling_utils.py
@@ -1238,8 +1238,8 @@ class ModelMixin(torch.nn.Module, PushToHubMixin):
}
# Dispatch model with hooks on all devices if necessary
- print(model.transformer_blocks[0].attn.to_q.weight)
- print(model.transformer_blocks[0].attn.to_q.weight_scale_inv)
+ # print(model.transformer_blocks[0].attn.to_q.weight)
+ # print(model.transformer_blocks[0].attn.to_q.weight_scale_inv)
if device_map is not None:
device_map_kwargs = {
"device_map": device_map,
diff --git a/src/diffusers/quantizers/finegrained_fp8/finegrained_fp8_quantizer.py b/src/diffusers/quantizers/finegrained_fp8/finegrained_fp8_quantizer.py
index 5dec8b0b8..7212befcd 100644
--- a/src/diffusers/quantizers/finegrained_fp8/finegrained_fp8_quantizer.py
+++ b/src/diffusers/quantizers/finegrained_fp8/finegrained_fp8_quantizer.py
@@ -90,9 +90,9 @@ class FinegrainedFP8Quantizer(DiffusersQuantizer):
Quantizes weights to FP8 format using Block-wise quantization
"""
# print("############ create quantized param ########")
- from accelerate.utils import set_module_tensor_to_device
+ # from accelerate.utils import set_module_tensor_to_device
- set_module_tensor_to_device(model, param_name, target_device, param_value)
+ # set_module_tensor_to_device(model, param_name, target_device, param_value)
module, tensor_name = get_module_from_name(model, param_name)
@@ -131,8 +131,8 @@ class FinegrainedFP8Quantizer(DiffusersQuantizer):
scale = scale.reshape(scale_orig_shape).squeeze().reciprocal()
# Load into the model
- module._buffers[tensor_name] = quantized_param.to(target_device)
- module._buffers["weight_scale_inv"] = scale.to(target_device)
+ module._parameters[tensor_name] = quantized_param.to(target_device)
+ module._parameters["weight_scale_inv"] = scale.to(target_device)
# print("_buffers[0]", module._buffers["weight_scale_inv"])
def check_if_quantized_param(
Inference code:
import torch
from diffusers import FluxPipeline, AutoModel, FinegrainedFP8Config
from diffusers.quantizers.finegrained_fp8.utils import FP8Linear
model_id = "black-forest-labs/FLUX.1-dev"
dtype = torch.bfloat16
quantization_config = FinegrainedFP8Config(
modules_to_not_convert=["norm", "proj_out", "x_embedder"], # weight_block_size=(32, 32)
)
transformer = AutoModel.from_pretrained(
model_id,
subfolder="transformer",
quantization_config=quantization_config,
torch_dtype=dtype,
device_map="cuda"
)
pipe = FluxPipeline.from_pretrained(
model_id,
transformer=transformer,
torch_dtype=dtype,
)
pipe.to("cuda")
for name, module in pipe.transformer.named_modules():
if isinstance(module, FP8Linear) and getattr(module, "weight_scale_inv", None) is not None:
if module.weight_scale_inv.ndim == 1:
print(name, module.weight_scale_inv.shape)
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
prompt = "A cat holding a sign that says hello world"
image = pipe(
prompt, num_inference_steps=50, guidance_scale=4.5, max_sequence_length=512
).images[0]
image.save("output.png")
print(f"Pipeline memory usage: {torch.cuda.max_memory_reserved() / 1024**3:.3f} GB")
The modules_to_not_convert includes proj_out and x_embedder because otherwise, we violate the shape constraint on scale (scale.ndim == 2).
Benchmarked finegrained FP8 with torchao FP8:
{"time": 18.975, "memory": 24.484153747558594, "quant_type": "finegrained"}
{"time": 6.625, "memory": 22.85780096054077, "quant_type": "torchao"}
| Method | Visualization |
|---|---|
| Finegrained | |
| TorchAO |
Code
import torch
torch.set_grad_enabled(False)
import torch.utils.benchmark as benchmark
import argparse
import json
from diffusers import FluxPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers import TorchAoConfig, FinegrainedFP8Config
def benchmark_fn(f, *args, **kwargs):
t0 = benchmark.Timer(
stmt="f(*args, **kwargs)",
globals={"args": args, "kwargs": kwargs, "f": f},
num_threads=1,
)
return float(f"{(t0.blocked_autorange().mean):.3f}")
def get_pipeline(quant_type="int8wo"):
dtype = torch.bfloat16
model_id = "black-forest-labs/FLUX.1-dev"
if quant_type == "torchao":
quant_config = TorchAoConfig(quant_type="float8dq_e4m3_row")
else:
quant_config = FinegrainedFP8Config(
modules_to_not_convert=["x_embedder", "proj_out"], weight_block_size=(64, 64)
)
pipeline_quant_config = PipelineQuantizationConfig(
quant_mapping={"transformer": quant_config}
)
pipe = FluxPipeline.from_pretrained(
model_id, quantization_config=pipeline_quant_config, torch_dtype=dtype
).to("cuda")
pipe.transformer.compile(fullgraph=True)
pipe.set_progress_bar_config(disable=True)
return pipe
def run_inference(pipe, pipe_kwargs):
_ = pipe(**pipe_kwargs)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--quant_type", type=str, default="torchao", choices=["torchao", "finegrained"])
args = parser.parse_args()
pipe = get_pipeline(quant_type=args.quant_type)
pipe_kwargs = {
"prompt": "A cat holding a sign that says hello world",
"height": 1024,
"width": 1024,
"guidance_scale": 3.5,
"num_inference_steps": 50,
"max_sequence_length": 512,
"generator": torch.manual_seed(0)
}
time = benchmark_fn(run_inference, pipe, pipe_kwargs)
inference_memory = torch.cuda.max_memory_allocated() / (1024 ** 3)
image = pipe(**pipe_kwargs).images[0]
artifact_dict = {"time": time, "memory": inference_memory}
artifact_dict.update(vars(args))
file_prefix = f"quant@{args.quant_type}"
image.save(f"{file_prefix}.png")
with open(f"{file_prefix}.json", "w") as f:
json.dump(artifact_dict, f)