GeneticNAS
GeneticNAS copied to clipboard
The genetic neural architecture search (GeneticNAS) is a neural architecture search method that is based on genetic algorithm which utilized weight sharing across all candidate network.
Genetic Neural Architecture Search (GeneticNAS)
The genetic neural architecture search (GeneticNAS) is a neural architecture search method that is based on genetic algorithm which utilized weight sharing accross all candidate network. The project paper:https://arxiv.org/abs/1907.02871
Includes code for CIFAR-10 and CIFAR-100 image classification
Installation
The first is install all the flowing prerequisites using conda:
- pytorch
- graphviz
- pygraphviz
- numpy
conda install graphviz
conda install pytorch torchvision cudatoolkit=9.0 -c pytorch
conda install pygraphviz
conda install numpy
Examples Run Search
In this section provide exmaple of how to run architecture search on there dataset CIFAR10 and CIFAR100, at the end of search a log folder is create under the current folder
CIFAR 10
python main.py --dataset_name CIFAR10 --config_file ./configs/config_cnn_search_cifar10.json
CIFAR 100
python main.py --dataset_name CIFAR100 --config_file ./configs/config_cnn_search_cifar100.json
Examples Run Final Training
In this section provide exmaple of how to run final training search on there dataset CIFAR10 and CIFAR100, where $LOG_DIR is the log folder of the search result.
CIFAR 10
python main.py --dataset_name CIFAR10 --final 1 --serach_dir $LOG_DIR --config_file ./configs/config_cnn_final_cifar10.json
CIFAR 100
python main.py --dataset_name CIFAR100 --final 1 --serach_dir $LOG_DIR --config_file ./configs/config_cnn_final_cifar10.json
Result
CIFAR10 Counvulation Cell

CIFAR100 Counvulation Cell

Counvulation cell final result
| Dataset | Accuracy[%] |
|---|---|
| CIFAR10 | 96% |
| CIFAR100 | 80.1% |