generate_with_langchain_docs is broken
[x] I have checked the documentation and related resources and couldn't resolve my bug.
Describe the bug
Running generate_with_langchain_docs gets stuck, showing:
Filename and doc_id are the same for all nodes.
Generating: 0%| | 0/1 [00:00<?, ?it/s]
Ragas version: 0.1.4 Python version: 3.9
Code to Reproduce
import os
import re
from typing import List, Dict, Any
import pandas as pd
from datasets import load_dataset
from langchain.docstore.document import Document
from ragas.testset.generator import TestsetGenerator
from ragas.testset.evolutions import simple, reasoning, multi_context
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
class SyntheticDatasetGenerator:
def __init__(self, min_content_length: int = 1000) -> None:
self.min_content_length = min_content_length
def run(self, data: pd.DataFrame) -> pd.DataFrame:
filtered_emails = self._filter_and_process_emails(data)
documents = [
Document(
page_content=email["body"],
metadata={
"date": email["date"],
"from": email["from"],
},
)
for email in filtered_emails
]
return self._generate_synthetic_dataset(documents)
def _extract_email_details(self, email_text: str) -> Dict[str, str]:
# Regular expression patterns for each field
patterns = {
"date": r"Date: (.+)",
"from": r"From: (.+)",
"to": r"To: (.+)",
}
result = {}
for field, pattern in patterns.items():
match = re.search(pattern, email_text)
if match:
result[field] = match.group(1).strip()
# Everything after "Subject:" is considered as the body
body_pattern = r"Subject:.*(?:\n|\r\n?)(.*(?:\n|\r\n?).*)"
body_match = re.search(body_pattern, email_text, re.DOTALL)
if body_match:
result["body"] = body_match.group(1).strip()
else:
print(email_text)
return result
def _filter_and_process_emails(self, data: pd.DataFrame) -> List[Dict[str, str]]:
filtered_emails = []
for _, email in data.iterrows():
if len(email.text) > self.min_content_length:
details = self._extract_email_details(email.text)
filtered_emails.append(details)
return filtered_emails
def _generate_synthetic_dataset(self, documents: List[Document]) -> pd.DataFrame:
generator_llm = ChatOpenAI(model_name="gpt-3.5-turbo")
critic_llm = ChatOpenAI(model_name="gpt-3.5-turbo")
embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
generator = TestsetGenerator.from_langchain(
generator_llm, critic_llm, embeddings, chunk_size=4096
)
testset = generator.generate_with_langchain_docs(
documents,
test_size=1,
distributions={simple: 0.5, reasoning: 0.1, multi_context: 0.4},
raise_exceptions=True,
)
return testset.to_pandas()
if __name__ == "__main__":
from dotenv import load_dotenv
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.getenv("OPENAI_API_KEY")
data = (
load_dataset("snoop2head/enron_aeslc_emails")["train"]
.select(range(100))
.to_pandas()
)
df = SyntheticDatasetGenerator().run(data)
Error trace
Filename and doc_id are the same for all nodes.
Generating: 0%| | 0/1 [00:00<?, ?it/s]
Expected behavior A synthetic dataset should be created.
Additional context I'm trying to generate a synthetic dataset of questions based on enron emails.
Same issue
File "/Users/jshah/anaconda3/envs/hf/lib/python3.10/site-packages/ragas/llms/base.py", line 177, in agenerate_text result = await self.langchain_llm.agenerate_prompt( AttributeError: 'LangchainLLMWrapper' object has no attribute 'agenerate_prompt'. Did you mean: 'agenerate_text'?
Hey @jayshah5696 This is a different issue, your issue is addressed in #762
Hey @rolandgvc do you face this issue often? else can you kill the run and try again
Same here with the azure api (python 3.10 and ragas 0.1.4). I'm following the manual (https://docs.ragas.io/en/latest/howtos/customisations/azure-openai.html#test-set-generation) with two pdf files located in the papers folder and the console remains stuck on "Generating: 0%| ....". If I include the extra processes "azure_model = LangchainLLMWrapper(azure_model)" and "azure_embeddings = LangchainEmbeddingsWrapper(azure_embeddings)", which I believe should not be included, the error "AttributeError: 'LangchainLLMWrapper' object has no attribute 'agenerate_prompt'. Did you mean: 'agenerate_text'?" is generated.
@floatcyc as mentioned refer to #762 and don't wrap azure model with langchainllmwrapper
just follow as exactly as here https://docs.ragas.io/en/stable/howtos/customisations/azure-openai.html#test-set-generation
I have the same issue with ".py" files...
Ragas version: 0.1.4 Python version: 3.12
Test.py:
from langchain_community.document_loaders import TextLoader
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from ragas.testset.generator import TestsetGenerator
from ragas.testset.evolutions import simple, reasoning, multi_context
loader = TextLoader("./NYC/NYC.txt", encoding='utf-8')
embedding = OpenAIEmbeddings()
llm = ChatOpenAI(temperature=0, model="gpt-4-0613")
generator = TestsetGenerator.from_langchain(
generator_llm=llm,
critic_llm=llm,
embeddings=embedding
)
distributions = {
simple: 0.5,
multi_context: 0.4,
reasoning: 0.1
}
documents = loader.load()
for document in documents:
document.metadata['filename'] = document.metadata['source']
testset = generator.generate_with_langchain_docs(documents, 10, distributions)
What is strange to me is that if I run the same code above in a ".ipynb" file it works as a charm
This issue happens everytime I run the script in a .py file, never in a .ipynb file @shahules786
I'm also having the same issue with Azure OpenAI.
I've followed the manual (https://docs.ragas.io/en/latest/howtos/customisations/azure-openai.html#test-set-generation).
Keep getting:
Generating: 0%| `
I've enabled the with_debugging_logs=True on generate_with_langchain_docs and got this:
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 3.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 0.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 0.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 3.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 3.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 0.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 3.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 3.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 0.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 4.0}
[ragas.testset.evolutions.INFO] retrying evolution: 0 times
[ragas.testset.filters.DEBUG] node filter: {'score': 1.0}
...
It keeps on this forever ...
Same issue here. Can also confirm that same code works with .ipynb `Filename and doc_id are the same for all nodes.
Generating: 80%|████████████████████████████████████████████████████████▊ | 8/10 [00:08<00:01, 1.39it/s] `
Get stuck at 80% always. Name: ragas Version: 0.1.5 Name: langchain Version: 0.1.13
I'm also having the same issue with Azure OpenAI.
I've followed the manual (https://docs.ragas.io/en/latest/howtos/customisations/azure-openai.html#test-set-generation).
Keep getting:
Generating: 0%| `I've enabled the
with_debugging_logs=Trueongenerate_with_langchain_docsand got this:[ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} ...It keeps on this forever ...
I got the same issue. Any suggestions? @shahules786
I tried it with packing the script in a fastapi app and run it with uvicorn.
For the standard server it also get stuck, then I tried to increase the workers.
Running my app with
uvicorn app:app --workers 4
works like charm. Maybe this is also helpful for you guys because .ipynb in not usefull if you want to integrate it somehow.
I tried it with packing the script in a fastapi app and run it with uvicorn. For the standard server it also get stuck, then I tried to increase the workers. Running my app with
uvicorn app:app --workers 4works like charm. Maybe this is also helpful for you guys because .ipynb in not usefull if you want to integrate it somehow.
I also came across the same problem no matter on .ipynb and .py.
Same issue... Always stuck in some point.
same problem, jsut following the instructions from the quickstart and it got stuck generating at 0%, also ran up a big openai bill which isnt much fun.
Hey @JuliGTV Sorry for the trouble man. We are aware of this issue but we have in fact trained a smaller model for you guys to use for free. Please be patient till we can integrate it with ragas.
no worries.
Fine tuning a small model for this usecase is great idea.
Although I would still like to understand better what went wrong, and if I could have done things differently
I was just trying to follow the quickstart guide, and I kept getting openai ratelimit errors, mostly during the embedding stage. I tried messing around with the runtime config but nothing seemed to solve it. When I looked at langsmith at least half of all the requests being made to openai were failing. Then I tried with a smaller document and the following code:
from dotenv import load_dotenv
load_dotenv()
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
loader = PyPDFLoader("mini_uth.pdf")
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size = 250,
chunk_overlap = 40,
length_function = len
)
documents = text_splitter.split_documents(docs)
from ragas.testset.generator import TestsetGenerator
from ragas.testset.evolutions import simple, reasoning, multi_context
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
# generator with openai models
generator_llm = ChatOpenAI(model="gpt-3.5-turbo-16k")
critic_llm = ChatOpenAI(model="gpt-4-1106-preview")
embeddings = OpenAIEmbeddings()
generator = TestsetGenerator.from_langchain(
generator_llm,
critic_llm,
embeddings
)
# generate testset
testset = generator.generate_with_langchain_docs(documents, test_size=10, distributions={simple: 0.5, reasoning: 0.25, multi_context: 0.25})
this time it completed the embedding and then got stuck at 0% at the generation stage. Additionally at somepoint it hit my opoenai spending limit, and it seems that the error that this triggers is not recognised by the run config, so it just keeps making failed calls forever (which openai apperently still charge you for!)
After I also tried doing it for just a single chunk of a small document, and it still got stuck at 0% generation
Any progress ? Also got a couple of runs in a .ipynb today that got stuck at 0% or 80% complete.
I finally trimmed down my document set to two instances and managed to generate 3 test cases in 13mins. Something seems to go wrong under the hood I assume.
I have the same issue, use AzureOpenAI and stuck in generating 90%.
This issue is also discussed here. #662
This issue is replicable across various machines and LLM model types .
As others have mentioned, the error seems to be threading related. Here is a stack trace when the generation is stuck.
---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
/tmp/ipykernel_30263/1853206858.py in <cell line: 1>()
----> 1 testset = generator.generate_with_langchain_docs(docs[:5],
2 test_size=10,
3 distributions={simple: 0.5, reasoning: 0.4, multi_context: 0.1},
4 with_debugging_logs=True)
.../python3.8/site-packages/ragas/testset/generator.py in generate_with_langchain_docs(self, documents, test_size, distributions, with_debugging_logs, is_async, raise_exceptions, run_config)
173 distributions = distributions or {}
174 # chunk documents and add to docstore
--> 175 self.docstore.add_documents(
176 [Document.from_langchain_document(doc) for doc in documents]
177 )
.../python3.8/site-packages/ragas/testset/docstore.py in add_documents(self, docs, show_progress)
213 for d in self.splitter.transform_documents(docs)
214 ]
--> 215 self.add_nodes(nodes, show_progress=show_progress)
216
217 def add_nodes(self, nodes: t.Sequence[Node], show_progress=True):
.../python3.8/site-packages/ragas/testset/docstore.py in add_nodes(self, nodes, show_progress)
250 result_idx += 1
251
--> 252 results = executor.results()
253 if not results:
254 raise ExceptionInRunner()
.../python3.8/site-packages/ragas/executor.py in results(self)
130 executor_job.start()
131 try:
--> 132 executor_job.join()
133 finally:
134 ...
.../python3.8/threading.py in join(self, timeout)
1009
1010 if timeout is None:
-> 1011 self._wait_for_tstate_lock()
1012 else:
1013 # the behavior of a negative timeout isn't documented, but
.../python3.8/threading.py in _wait_for_tstate_lock(self, block, timeout)
1025 if lock is None: # already determined that the C code is done
1026 assert self._is_stopped
-> 1027 elif lock.acquire(block, timeout):
1028 lock.release()
1029 self._stop()
KeyboardInterrupt:
Adding parameter is_async=False worked for me on 0.1.7.
generator.generate_with_langchain_docs(documents, test_size=10, distributions={simple: 0.5, reasoning: 0.25, multi_context: 0.25},is_async=False)
Edit: Actually, this was a red herring. Seems like the key to getting this to work was running in debug and stepping through some of the code which I presume is somehow preventing the deadlock.
any help on this probably?for me even after adding is_async=False , it is stuck at Generating: 0%|.Would be helpful to get some solution to this.Thanks in advance.
I managed to make this work using OpenAI's gpt-3.5-turbo-16k. However, I'm trying to create the dataset using Llama3 running on LMStudio, and I'm getting the same stuck errror. Any advances on this?
Also having the same problem. The code is getting stuck at generate_with_langchain_docs
Filename and doc_id are the same for all nodes.
Generating: 0%| | 0/10 [03:41<?, ?it/s]
Python 3.11.1
Ragas 0.1.9
Langchain 0.2.5
from typing import List
from langchain_core.documents.base import Document
from langchain_google_vertexai import VertexAI, VertexAIEmbeddings
from ragas.testset.generator import TestsetGenerator
def create_ragas_rag_benchmarking_dataset(
llm_generator_model: VertexAI,
llm_critic_model: VertexAI,
embeddings_model: VertexAIEmbeddings,
docs: List[Document],
):
generator = TestsetGenerator.from_langchain(
generator_llm=llm_generator_model,
critic_llm=llm_critic_model,
embeddings=embeddings_model
)
# generate testset
testset = generator.generate_with_langchain_docs(
documents=docs,
test_size=10,
with_debugging_logs=True,
is_async=False,
distributions={
simple: 0.5,
reasoning: 0.25,
multi_context: 0.25
}
)
return testset
I'm also having the same issue with Azure OpenAI.
I've followed the manual (https://docs.ragas.io/en/latest/howtos/customisations/azure-openai.html#test-set-generation).
Keep getting:
Generating: 0%| `I've enabled the
with_debugging_logs=Trueongenerate_with_langchain_docsand got this:[ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 3.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 0.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 4.0} [ragas.testset.evolutions.INFO] retrying evolution: 0 times [ragas.testset.filters.DEBUG] node filter: {'score': 1.0} ...It keeps on this forever ...
Any one fixed this problem?
Closing this as resolved now. Async/uvloop compatibility fixed