BoT
BoT copied to clipboard
Implementation of "Bag of Tricks for Node Classification with Graph Neural Networks" based on DGL
Bag of Tricks for Node Classification with Graph Neural Networks
The official implementation for Bag of Tricks for Node Classification with Graph Neural Networks (Best Paper Award at DLG-KDD'21 workshop) based on Deep Graph Library.
Dependencies
- dgl 0.5.*
- torch 1.6.0
- ogb 1.3.1
How to run
Cora, Citeseer, Pubmed, Reddit, ogbn-arxiv
Run
cd src/no-sampling/
python3 run.py [args]
For example,
python3 run.py --optimizer=rmsprop --lr=0.002 --loss=loge --labels --mask-rate=0.5 --model=gat --linear --n-heads=3 --n-hidden=250 --dropout=0.75 --input-drop=0.25 --attn-drop=0.1 --norm-adj=symm
More details of the hyperparameters and experimental results can be found at the end of run.py.
ogbn-proteins
Run
cd src/ogbn-proteins/
python3 gat.py [args]
For the results in the paper, run
python3 gat.py
or
python3 gat.py --use-labels
ogbn-products
First change the directory
cd src/ogbn-products/
For GAT, run
python3 gat.py [args]
For MLP, run
python3 mlp.py [args]
Citing our work
If you find this work helpful in your research, please consider citing our work.
@article{wang2021bag,
title={Bag of Tricks for Node Classification with Graph Neural Networks},
author={Wang, Yangkun and Jin, Jiarui and Zhang, Weinan and Yu, Yong and Zhang, Zheng and Wipf, David},
journal={arXiv preprint arXiv:2103.13355},
year={2021}
}