SystemNoise icon indicating copy to clipboard operation
SystemNoise copied to clipboard

SysNoise: Exploring Training-Deployment System Inconsistency

Abstract

We introduce SysNoise, a frequently occurred but often overlooked noise in the deep learning training-deployment cycle. In particular, SysNoise happens when the source training system switches to a disparate target system in deployments, where various tiny system mismatch adds up to a non-negligible difference. We identify and classify SysNoise into three categories based on the inference stage, namely pre-processing noise, model inference noise, and post-processing noise. Then, we build a holistic benchmark to quantitatively measure the impact of SysNoise, comprehending image classification and object detection tasks. Specifically, we find a well-trained ResNet-50 can degenerate to a ResNet-34 under certain cases of SysNoise and much worse. Additionally, SysNoise seems to be highly diverse and common mitigations like data augmentation and adversarial training show limited effects on it, revealing its distinction from the existing adversarial noises and natural noises. Together, our findings open a new research topic and we hope this work will raise research attention to deep learning deployment systems accounting for model performance.

Results

ImageNet Classification

Architecture Trained ACC Decode Δ ACC Resize Δ ACC Color Mode Δ ACC FP16 Δ ACC Int8 Δ ACC Ceil Mode Δ ACC
ResNet18x0.125 33.62 2.10+-5.86E-01 2.26+-1.21E-02 0.15 -0.01 1.16 2.97
ResNet18x0.25 48.96 1.98+-1.01E+00 2.11+-1.56E-01 0.14 -0.01 0.82 2.34
ResNet18x0.5 61.64 1.67+-9.68E-01 1.76+-5.03E-03 0.19 -0.01 0.15 2.72
ResNet-18 69.96 1.02+-1.30E-02 1.01+-6.60E-01 0.13 0.00 0.20 2.40
ResNet-34 73.59 0.99+-8.00E-03 0.77+-5.57E-01 0.14 0.00 0.04 0.85
ResNet-50 76.39 0.98+-3.46E-03 0.75+-5.67E-01 0.09 0.00 0.06 1.24
ResNet-101 78.10 0.68+-8.72E-03 0.62+-5.02E-01 0.24 0.01 0.69 0.75
MobileNetV2-0.5 64.94 2.34+-2.50E-02 2.04+-9.16E-01 0.18 0.01 0.57 -
MobileNetV2-0.75 70.26 1.67+-6.43E-03 1.47+-8.00E-01 0.16 0.01 0.72 -
MobileNetV2-1 73.12 1.70+-6.43E-03 1.48+-8.76E-01 0.07 0.02 0.77 -
MobileNetV2-1.4 75.84 1.85+-2.73E-02 1.65+-8.98E-01 0.10 0.01 0.53 -
RegNetX-400M 70.97 1.63+-1.40E-02 1.42+-7.79E-01 0.07 0.01 0.09 -
RegNetX-800M 74.04 1.12+-1.44E-02 0.97+-6.24E-01 0.19 0.02 0.24 -
RegNetX-1.6G 76.29 0.84+-1.01E-02 0.79+-6.98E-01 0.20 0.01 0.19 -
RegNetX-3.2G 77.89 0.61+-1.10E-02 0.53+-5.34E-01 0.20 0.00 0.24 -

Object Detection

Method Architecture Trained mAP Decode Δ mAP Resize Δ mAP Color Mode Δ mAP Upsample Δ mAP Int8 Δ mAP Ceil Mode Δ mAP Post Processing Δ mAP
Faster RCNN FPN ResNet-34 36.76 0.02+-2.08E-02 0.93+-1.28E+00 0.25 1.28 0.06 0.04 2.29
Faster RCNN FPN ResNet-50 37.36 0.02+-1.00E-02 1.12+-1.57E+00 0.10 1.66 0.10 0.03 2.39
Faster RCNN FPN MobileNetV2 30.32 0.01+-1.00E-02 0.38+-5.24E-01 0.24 0.96 0.07 - 2.23
RetinaNet ResNet-34 35.71 0.01+-1.15E-02 0.77+-1.09E+00 0.29 0.35 0.10 0.01 3.44
RetinaNet ResNet-50 36.59 0.01+-1.15E-02 0.99+-1.36E+00 0.36 0.69 0.03 0.01 3.00

Datasets

For experiments of pre-processing, we provide the dataset for you to evaluate.

Different ImageNet Dataset for Pre-processing

Noise Type Download Link
Different Decoder + Resize Method Download
YUV Color Mode Download

Different COCO Dataset for Pre-processing

Noise Type Download Link
Pillow Decoder + Pillow.Bilinear Resize Method Download
Pillow Decoder + Pillow.Nearest Resize Method Download

Note

For Decoder and Resize noise, we strongly recommend that you use the online generation method we provide in the sample code instead of downloading their data sets. While the noise of color mode is generated on Altas, so download this dataset is necessary.