作者您好,为什么分类预测结果一直为daisy
权重载入了吗
我检查了代码,问题再加载数据时,不是加载的所有数据集,是第一个循环的数据
数据集划分错误: 由于 read_split_data 函数中的 return 语句放置在第一个类别循环的末尾,导致函数只会处理第一个类别的数据并提前返回。确保数据集划分包含所有类别。 def read_split_data(root: str, val_rate: float = 0.2, plot_image: bool = False): # 保证随机结果可复现 random.seed(0) assert os.path.exists(root), f'dataset root {root} does not exist.'
# 遍历文件夹,一个文件夹对应一个类别
flower_classes = [cla for cla in os.listdir(root) if os.path.isdir(os.path.join(root, cla))]
# 排序,保证顺序一致
flower_classes.sort()
# 给类别进行编码,生成对应的数字索引
class_indices = dict((k, v) for v, k in enumerate(flower_classes))
json_str = json.dumps(dict((val, key) for key, val in class_indices.items()), indent=4)
with open('class_indices.json', 'w') as f:
f.write(json_str)
# 训练集所有图片的路径和对应索引信息
train_images_path, train_images_label = [], []
# 验证集所有图片的路径和对应索引信息
val_images_path, val_images_label = [], []
# 每个类别的样本总数
every_class_num = []
# 支持的图片格式
images_format = [".jpg", ".JPG", ".png", ".PNG"]
# 遍历每个文件夹下的文件
for cla in flower_classes:
cla_path = os.path.join(root, cla)
# 获取每个类别文件夹下所有图片的路径
images = [os.path.join(cla_path, i) for i in os.listdir(cla_path)
if os.path.splitext(i)[-1] in images_format]
# 获取类别对应的索引
image_class = class_indices[cla]
# 获取此类别的样本数
every_class_num.append(len(images))
# 按比例随机采样验证集
val_path = random.sample(images, k=int(len(images) * val_rate))
for img_path in images:
if img_path in val_path:
val_images_path.append(img_path)
val_images_label.append(image_class)
else:
train_images_path.append(img_path)
train_images_label.append(image_class)
print(f"{sum(every_class_num)} images found in dataset.")
print(f"{len(train_images_path)} images for training.")
print(f"{len(val_images_path)} images for validation.")
if plot_image:
plt.bar(range(len(flower_classes)), every_class_num, align='center')
plt.xticks(range(len(flower_classes)), flower_classes)
for i, v in enumerate(every_class_num):
plt.text(x=i, y=v + 5, s=str(v), ha='center')
plt.xlabel('image class')
plt.ylabel('number of images')
plt.title('flower class distribution')
plt.show()
return train_images_path, train_images_label, val_images_path, val_images_label
就是把data_utils.py里的77-91行改一下缩进就好了: print(f"{sum(every_class_num)} images found in dataset.") print(f"{len(train_images_path)} images for training.") print(f"{len(val_images_path)} images for validation.")
if plot_image:
plt.bar(range(len(flower_classes)), every_class_num, align='center')
plt.xticks(range(len(flower_classes)), flower_classes)
for i, v in enumerate(every_class_num):
plt.text(x=i, y=v + 5, s=str(v), ha='center')
plt.xlabel('image class')
plt.ylabel('number of images')
plt.title('flower class distribution')
plt.show()
return train_images_path, train_images_label, val_images_path, val_images_label