is it possible to run one validation fold per a parameter set?
Hi,
is it possible to run one validation fold per a parameter set? Ideally I would like to use a custom constructed training-validation split . Though it is not the issue, because right now i get error with the split made by optunity.cross_validation.generate_folds: Modified bin/examples/python/skleran/svc.py code to use one fold: folds = optunity.cross_validation.generate_folds(data.shape[0], num_folds=3) outer_cv = optunity.cross_validated(x=data, y=labels, num_folds=1, folds=[folds[0:1]], aggregator=optunity.cross_validation.mean)
outer_cv = optunity.cross_validated(x=data, y=labels, num_folds=3)
compute area under ROC curve of default parameters
def compute_roc_standard(x_train, y_train, x_test, y_test): model = sklearn.svm.SVC().fit(x_train, y_train) decision_values = model.decision_function(x_test) auc = optunity.metrics.roc_auc(y_test, decision_values) return auc
decorate with cross-validation
compute_roc_standard = outer_cv(compute_roc_standard) roc_standard = compute_roc_standard()
Traceback (most recent call last):
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_comm.py", line 1071, in doIt
result = pydevd_vars.evaluateExpression(self.thread_id, self.frame_id, self.expression, self.doExec)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_vars.py", line 344, in evaluateExpression
Exec(expression, updated_globals, frame.f_locals)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_exec.py", line 3, in Exec
exec exp in global_vars, local_vars
File "
Traceback (most recent call last):
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_comm.py", line 1071, in doIt
result = pydevd_vars.evaluateExpression(self.thread_id, self.frame_id, self.expression, self.doExec)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_vars.py", line 344, in evaluateExpression
Exec(expression, updated_globals, frame.f_locals)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_exec.py", line 3, in Exec
exec exp in global_vars, local_vars
File "
Traceback (most recent call last):
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_comm.py", line 1071, in doIt
result = pydevd_vars.evaluateExpression(self.thread_id, self.frame_id, self.expression, self.doExec)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_vars.py", line 344, in evaluateExpression
Exec(expression, updated_globals, frame.f_locals)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_exec.py", line 3, in Exec
exec exp in global_vars, local_vars
File "
Traceback (most recent call last):
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_comm.py", line 1071, in doIt
result = pydevd_vars.evaluateExpression(self.thread_id, self.frame_id, self.expression, self.doExec)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_vars.py", line 344, in evaluateExpression
Exec(expression, updated_globals, frame.f_locals)
File "/opt/pycharm-community-4.5.4/helpers/pydev/pydevd_exec.py", line 3, in Exec
exec exp in global_vars, local_vars
File "
Cleaner code:
folds = optunity.cross_validation.generate_folds(data.shape[0], num_folds=3)
use one fold:
outer_cv = optunity.cross_validated(x=data, y=labels, num_folds=1, folds=[folds[0:1]], aggregator=optunity.cross_validation.mean)
compute area under ROC curve of default parameters
def compute_roc_standard(x_train, y_train, x_test, y_test): model = sklearn.svm.SVC().fit(x_train, y_train) decision_values = model.decision_function(x_test) auc = optunity.metrics.roc_auc(y_test, decision_values) return auc
decorate with cross-validation
compute_roc_standard = outer_cv(compute_roc_standard) roc_standard = compute_roc_standard()
Can you provide some more information on why you want to do this? I think there is an XY problem here ...
I run a computationally intensive learning (deep neural network). I would like sample biger parameter space in expense of replication (multiple folds) of each parameter space point