MachineLearning icon indicating copy to clipboard operation
MachineLearning copied to clipboard

Machine learning algorithms implemented by pure numpy

Results 11 MachineLearning issues
Sort by recently updated
recently updated
newest added

Bumps [numpy](https://github.com/numpy/numpy) from 1.13.3 to 1.22.0. Release notes Sourced from numpy's releases. v1.22.0 NumPy 1.22.0 Release Notes NumPy 1.22.0 is a big release featuring the work of 153 contributors spread...

dependencies

Bumps [tensorflow-gpu](https://github.com/tensorflow/tensorflow) from 1.4.0 to 2.7.2. Release notes Sourced from tensorflow-gpu's releases. TensorFlow 2.7.2 Release 2.7.2 This releases introduces several vulnerability fixes: Fixes a code injection in saved_model_cli (CVE-2022-29216) Fixes...

dependencies

论文想引用您的代码,您的论文出处可以分享下嘛?

Bumps [pillow](https://github.com/python-pillow/Pillow) from 6.2.0 to 9.0.1. Release notes Sourced from pillow's releases. 9.0.1 https://pillow.readthedocs.io/en/stable/releasenotes/9.0.1.html Changes In show_file, use os.remove to remove temporary images. CVE-2022-24303 #6010 [@​radarhere, @​hugovk] Restrict builtins within...

dependencies

Implementation of Support Vector Machines

您好, 读过您写的书,收获很大,谢谢。 有一个疑问,如题。Time.timeit利用wrapt.dectator来计算一个函数的执行时间。通常是没有问题的。但是如果是一个嵌套函数,**外层函数的计时就是:内层函数执行时间+wrapt 自身执行的时间**。如果内层函数被执行n次,那么外层函数的计时时间就多出了n*(wrapt 自身执行时间),这可能导致时间分析不准确。比如下面的例子, outer()的总时间被错误的多计时了(100000000*wrap时间)。不知道有没有办法在wrapt之间进行通讯,来扣除内部wrapt 自身的时间(不是inner函数的执行时间哈) ``` @timing.timeit() def inner(): print("inner") @timing.timeit() def outter(): for i in range(100000000): inner() print("outer") ```

Update Bases.py. An error happened, when I run the RandomForest.py in the forth Chapter. The label should be "p" or "e" (a char), but it asked to convert to np.float32.

Bumps [torch](https://github.com/pytorch/pytorch) from 0.2.1+a4fc05a to 1.13.1. Release notes Sourced from torch's releases. PyTorch 1.13.1 Release, small bug fix release This release is meant to fix the following issues (regressions /...

dependencies

Bumps [tensorflow-gpu](https://github.com/tensorflow/tensorflow) from 1.4.0 to 2.12.0. Release notes Sourced from tensorflow-gpu's releases. TensorFlow 2.12.0 Release 2.12.0 TensorFlow Breaking Changes Build, Compilation and Packaging Removed redundant packages tensorflow-gpu and tf-nightly-gpu. These...

dependencies