HSIR
HSIR copied to clipboard
Out-of-box Hyperspectral Image Restoration Toolbox and Benchmark
HSIR
Out-of-box Hyperspectral Image Restoration Toolbox

Denoising for remotely sensed images from QRNN3D
Install
pip install hsir
Usage
Here are some runable examples, please refer to the code for more options.
python hsirun.train -a hsir.model.qrnn3d.qrnn3d
python hsirun.test -a hsir.model.qrnn3d.qrnn3d -r qrnn3d.pth -t icvl_512_50
Benchmark
Pretrained Models | Training Log | Datasets
Baidu Drive's Share Code=HSIR
Supported Models
Gaussian Denoising on ICVL
| Sigma=30 | Sigma=50 | Sigma=70 | Sigma=Blind | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Params(M) | Runtime(s) | FLOPs | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | |
| Noisy | 18.59 | 0.110 | .0807 | 14.15 | 0.046 | 0.991 | 11.23 | 0.025 | 1.105 | 17.34 | 0.114 | 0.859 | |||
| BM4D | 154 | 38.45 | 0.934 | 0.126 | 35.60 | 0.889 | 0.169 | 33.70 | 0.845 | 0.207 | 37.66 | 0.914 | 0.143 | ||
| TDL | 18 | 40.58 | 0.957 | 0.062 | 38.01 | 0.932 | 0.085 | 36.36 | 0.909 | 0.105 | 39.91 | 0.946 | 0.072 | ||
| ITSReg | 907 | 41.48 | 0.961 | 0.088 | 38.88 | 0.941 | 0.098 | 36.71 | 0.923 | 0.112 | 40.62 | 0.953 | 0.087 | ||
| LLRT | 627 | 41.99 | 0.967 | 0.056 | 38.99 | 0.945 | 0.075 | 37.36 | 0.930 | 0.087 | 40.97 | 0.956 | 0.064 | ||
| KBR | 1755 | 41.48 | 0.984 | 0.088 | 39.16 | 0.974 | 0.100 | 36.71 | 0.961 | 0.113 | 40.68 | 0.979 | 0.080 | ||
| WLRTR | 1600 | 42.62 | 0.988 | 0.056 | 39.72 | 0.978 | 0.073 | 37.52 | 0.967 | 0.095 | 41.66 | 0.983 | 0.064 | ||
| NGmeet | 166 | 42.99 | 0.989 | 0.050 | 40.26 | 0.980 | 0.059 | 38.66 | 0.974 | 0.067 | 42.23 | 0.985 | 0.053 | ||
| HSID | 0.40 | 3 | 38.70 | 0.949 | 0.103 | 36.17 | 0.919 | 0.134 | 34.31 | 0.886 | 0.161 | 37.80 | 0.935 | 0.116 | |
| QRNN3D | 0.86 | 0.73 | 42.22 | 0.988 | 0.062 | 40.15 | 0.982 | 0.074 | 38.30 | 0.974 | 0.094 | 41.37 | 0.985 | 0.068 | |
| TS3C | 0.83 | 0.95 | 42.36 | 0.986 | 0.079 | 40.47 | 0.980 | 0.087 | 39.05 | 0.974 | 0.096 | 41.52 | 0.983 | 0.085 | |
| GRUNet | 14.2 | 0.87 | 42.84 | 0.989 | 0.052 | 40.75 | 0.983 | 0.062 | 39.02 | 0.977 | 0.080 | 42.03 | 0.987 | 0.057 | |
Complex Denoising on ICVL
| non-iid | g+stripe | g+deadline | g+impulse | mixture | ||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Params(M) | Runtime(s) | FLOPs | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | PSNR | SSIM | SAM | |
| Noisy | 18.25 | 0.168 | 0.898 | 17.80 | 0.159 | 0.910 | 17.61 | 0.155 | 0.917 | 14.80 | 0.114 | 0.926 | 14.08 | 0.099 | 0.944 | |||
| LRMR | 32.80 | 0.719 | 0.185 | 32.62 | 0.717 | 0.187 | 31.83 | 0.709 | 0.227 | 29.70 | 0.623 | 0.311 | 28.68 | 0.608 | 0.353 | |||
| LRTV | 33.62 | 0.905 | 0.077 | 33.49 | 0.905 | 0.078 | 32.37 | 0.895 | 0.115 | 31.56 | 0.871 | 0.242 | 30.47 | 0.858 | 0.287 | |||
| NMoG | 34.51 | 0.812 | 0.187 | 33.87 | 0.799 | 0.265 | 32.87 | 0.797 | 0.276 | 28.60 | 0.652 | 0.486 | 27.31 | 0.632 | 0.513 | |||
| TDTV | 38.14 | 0.944 | 0.075 | 37.67 | 0.940 | 0.081 | 36.15 | 0.930 | 0.099 | 36.67 | 0.935 | 0.094 | 34.77 | 0.919 | 0.113 | |||
| HSID | 0.40 | 3 | 38.40 | 0.947 | 0.095 | 37.77 | 0.942 | 0.104 | 37.65 | 0.940 | 0.102 | 35.00 | 0.899 | 0.174 | 34.05 | 0.888 | 0.181 | |
| TS3C | 0.83 | 0.95 | 41.12 | 0.986 | 0.069 | 40.66 | 0.985 | 0.077 | 39.38 | 0.982 | 0.100 | 35.92 | 0.951 | 0.205 | 34.36 | 0.945 | 0.230 | |
| QRNN3D | 0.86 | 0.73 | 42.79 | 0.978 | 0.052 | 42.35 | 0.976 | 0.055 | 42.23 | 0.976 | 0.056 | 39.23 | 0.945 | 0.109 | 38.25 | 0.938 | 0.107 | |
| GRUNet | 14.2 | 0.87 | 42.89 | 0.992 | 0.047 | 42.39 | 0.991 | 0.050 | 42.11 | 0.991 | 0.050 | 40.70 | 0.985 | 0.067 | 38.51 | 0.981 | 0.081 | |
Citation
If you find this repo helpful, please considering citing us.
@misc{hsir,
author={Zeqiang Lai, Miaoyu Li, Ying Fu},
title={HSIR: Out-of-box Hyperspectral Image Restoration Toolbox},
year={2022},
url={https://github.com/bit-isp/HSIR},
}