Using TensorFlow backend. train.py:41: UserWarning: Update your Conv2Dcall to the Keras 2 API:Conv2D(filters=32, input_shape=(1, 28, 28..., padding="same", kernel_size=(5, 5))model.add(Convolution2D(nb_filter=32,nb_row=5,nb_col=5,border_mode='same',input_shape=(1,28,28))) train.py:43: UserWarning: Update yourMaxPooling2Dcall to the Keras 2 API:MaxPooling2D(padding="same", pool_size=(2, 2))model.add(MaxPooling2D(pool_size=(2,2),border_mode='same')) train.py:44: UserWarning: Update yourConv2Dcall to the Keras 2 API:Conv2D(filters=64, input_shape=(32, 14, 1..., padding="same", kernel_size=(5, 5))model.add(Convolution2D(nb_filter=64,nb_row=5,nb_col=5,border_mode='same',input_shape=(32,14,14))) train.py:46: UserWarning: Update yourMaxPooling2Dcall to the Keras 2 API:MaxPooling2D(padding="same", pool_size=(2, 2))`
model.add(MaxPooling2D(pool_size=(2,2),border_mode='same'))
Traceback (most recent call last):
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py", line 686, in _call_cpp_shape_fn_impl
input_tensors_as_shapes, status)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/errors_impl.py", line 473, in exit
c_api.TF_GetCode(self.status.status))
tensorflow.python.framework.errors_impl.InvalidArgumentError: Dimension 2 in both shapes must be equal, but are 28 and 32. Shapes are [5,5,28,32] and [5,5,32,1]. for 'Assign' (op: 'Assign') with input shapes: [5,5,28,32], [5,5,32,1].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "train.py", line 55, in
model.load_weights('model_weights.h5')
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/keras/models.py", line 737, in load_weights
topology.load_weights_from_hdf5_group(f, layers)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/keras/engine/topology.py", line 3166, in load_weights_from_hdf5_group
K.batch_set_value(weight_value_tuples)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/keras/backend/tensorflow_backend.py", line 2365, in batch_set_value
assign_op = x.assign(assign_placeholder)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/variables.py", line 594, in assign
return state_ops.assign(self._variable, value, use_locking=use_locking)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/state_ops.py", line 276, in assign
validate_shape=validate_shape)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/ops/gen_state_ops.py", line 59, in assign
use_locking=use_locking, name=name)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/op_def_library.py", line 787, in _apply_op_helper
op_def=op_def)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3162, in create_op
compute_device=compute_device)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 3208, in _create_op_helper
set_shapes_for_outputs(op)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2427, in set_shapes_for_outputs
return _set_shapes_for_outputs(op)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2400, in _set_shapes_for_outputs
shapes = shape_func(op)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/ops.py", line 2330, in call_with_requiring
return call_cpp_shape_fn(op, require_shape_fn=True)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py", line 627, in call_cpp_shape_fn
require_shape_fn)
File "/data/anaconda3/envs/tensorflow/lib/python3.5/site-packages/tensorflow/python/framework/common_shapes.py", line 691, in _call_cpp_shape_fn_impl
raise ValueError(err.message)
ValueError: Dimension 2 in both shapes must be equal, but are 28 and 32. Shapes are [5,5,28,32] and [5,5,32,1]. for 'Assign' (op: 'Assign') with input shapes: [5,5,28,32], [5,5,32,1].
`
This is the error i got while running train.py. Can someone please help me to fix it?