Not able to reproduce results
Hello,
thank you for your work. The code unfortunately does not work because of inconsistencies in args and some variables names. I tried to fix it and reproduce the results for TNBC but the results that I get for 5-hot is 0.11 IOU with BCE, which is 0.10 points less to what you report. Could you please help me reproduce the results?
Hi,
Please remain in this thread as your thread in the other repository creates confusion, since it is a different repo, thank you.
However, I have read your reply, you mentioned that you do preprocessing and then run Learning_main.py. After running Learning_main do you fine-tune the model ? if yes, what parameters do you use ?
Thank you very much for your response I really appreciate your help.
After training the model I run Evaluation_main.py by using the parameters mentioned below.
` def addEvaluationArgs():
parser = argparse.ArgumentParser(description="Evaluation Arguments")
parser.add_argument("--lr-method",type=str,default='Meta_Learning',help="Enter Meta_Learning or Supervised_Learning")
parser.add_argument("--finetune", type=int, default=1)
parser.add_argument("--testfinetune", type=int, default=1)
parser.add_argument("--affine", type=int, default=0)
parser.add_argument("--switchaffine", type=int, default=0)
parser.add_argument("--targets",type=str,nargs="*",default=[ 'TNBC'],
help="Combination of B5,B39,TNBC,ssTEM,EM")
parser.add_argument("--architect",type=str,default='FCRN',help="Enter FCRN or UNet")
parser.add_argument("--eval-meta-train-losses",type=str,nargs="*",default=['BCE'],
# 'BCE_Entropy', 'BCE_Distillation', 'Combined'],
help="Combination of BCE,BCE_Entropy,BCE_Distillation,Combined")
parser.add_argument("--eval-selections",type=int,nargs="*",default=list(range(1,11)),
help="Up to 10 selections")
parser.add_argument("--selections",type=int,nargs="*",default=list(range(1,11)),
help="Up to 10 selections")
parser.add_argument("--meta-lr", type=float, default=0.0001,
help="Pre-trained meta step size")
parser.add_argument("--lr", type=float, default=0.001,
help="Pre-trained learning rate")
parser.add_argument("--metamethods",type=str,nargs="*",default=['BCE'],
help="Combination of BCE,BCE_Entropy,BCE_Distillation,Combined")
parser.add_argument("--finetune-lr", type=float, default=0.1,
help="Finetune learning rate")
parser.add_argument("--finetune-loss", type=str, default="bce",
help="Binary Cross entropy Loss (BCE) function or Weighted BCE (weightedbce)")
parser.add_argument('--meta-epochs', type=int, default=300)
parser.add_argument('--inner_epochs', type=int, default=20)
parser.add_argument('--finetune-epochs', type=int, default=20)
parser.add_argument('--statedictepoch', type=int, default=None,help="Load saved parameters from pre-training epoch #")
parser.add_argument('--numshots', type=int,nargs="*",default=[1])
parser.add_argument("--pretrained-name", type=str, default='',
help="model name to be finetuned and evaluated")
parser.add_argument("--finetune-name", type=str, default='',
help="finetuned model name")
return parser
`