Ground true dataset training and testing
Hello, thank you very much for your work. Enter 2D ground truth, execute: Python main.py -- frames 1-- batch_ Size 256-- keypoints' gt '. The best result obtained is p1: 37.22, which is not as good as 34.6 in the paper. May I ask what is causing this? Looking forward to your reply, thank you. @Vegetebird
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
Why can't i get the weight file of the best model when i use "python main.py --frames 1 --batch_size 256" , after training for 20 epochs? Do i need to add something to save the best model in ''python main.py --frames 1 --batch_size 256''?
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
Why can't i get the weight file of the best model when i use "python main.py --frames 1 --batch_size 256" , after training for 20 epochs? Do i need to add something to save the best model in ''python main.py --frames 1 --batch_size 256''?
I have obtained the file generated below when I use "python main.py --frames 243 --batch_size 256" .
-
"python main.py --frames 243 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" .
-
Only keep the model with the smallest MPJPE value, delete others, and place the model generated in the pre training stage among them.
-
"python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 243".
Finally, can you provide relevant screenshots!
This is one of the files I obtained after using "python main.py --frames 243 --batch_size 256", and the train.log file is empty
and this is my training process
I have obtained the file generated below when I use "python main.py --frames 243 --batch_size 256" .
- "python main.py --frames 243 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" .
- Only keep the model with the smallest MPJPE value, delete others, and place the model generated in the pre training stage among them.
- "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 243".
Finally, can you provide relevant screenshots!
At 2024-11-28 15:28:39, "grizzlies33" @.***> wrote:
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
Why can't i get the weight file of the best model when i use "python main.py --frames 1 --batch_size 256" , after training for 20 epochs? Do i need to add something to save the best model in ''python main.py --frames 1 --batch_size 256''?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>
This is one of the files I obtained after using "python main.py --frames 243 --batch_size 256", and the train.log file is empty
and this is my training process
Your training file indicates 1 frame instead of 243 frames, and is this the Human3.6M dataset? My personal suggestion is to download the latest GraphMLP, then decompress and retrain it
yes, i used Human3.6M and ''python main.py --frames 1 --batch_size 256'' sorry i didn't look carefully. And I modified the GraphMLP model ,but i don't think that change will affect this. I will try again, thanks
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
How many epochs should i train by adding the refine module after pretraining for 20 epochs?
20
---- Replied Message ---- | From | @.> | | Date | 12/01/2024 12:33 | | To | Vegetebird/GraphMLP @.> | | Cc | zhang-yuxian @.>, Comment @.> | | Subject | Re: [Vegetebird/GraphMLP] Ground true dataset training and testing (Issue #3) |
1, I suggest you find common/arguments.py; 2, "parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)"-----"parser.add_argument('--keypoints', default='gt', type=str)"; 3, "python main.py --frames 1 --batch_size 256" , After training for 20 epochs, add refine module , "python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [your best model saved path]" 4, "python main.py --test --previous_dir 'checkpoint/[test model file name]' --frames 1"
How many epochs should i train by adding the refine module after pretraining for 20 epochs?
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>
hellozhang-yuxian,after train 20 epoch,and next ,I add refine model,and replace best saved model path to my path,but when I run, these are questions like follow: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256, 1536]], which is output 0 of ReluBackward0, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
When testing, the code will be run. It is necessary to ensure that the code during the run is consistent with the code at the time of testing.
---- Replied Message ---- | From | @.> | | Date | 12/30/2024 13:02 | | To | Vegetebird/GraphMLP @.> | | Cc | zhang-yuxian @.>, Comment @.> | | Subject | Re: [Vegetebird/GraphMLP] Ground true dataset training and testing (Issue #3) |
hellozhang-yuxian,after train 20 epoch,and next ,I add refine model,and replace best saved model path to my path,but when I run, these are questions like follow: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256, 1536]], which is output 0 of ReluBackward0, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
— Reply to this email directly, view it on GitHub, or unsubscribe. You are receiving this because you commented.Message ID: @.***>
hellozhang-yuxian,after train 20 epoch,and next ,I add refine model,and replace best saved model path to my path,but when I run, these are questions like follow: RuntimeError: one of the variables needed for gradient computation has been modified by an inplace operation: [torch.cuda.FloatTensor [256, 1536]], which is output 0 of ReluBackward0, is at version 1; expected version 0 instead. Hint: enable anomaly detection to find the operation that failed to compute its gradient, with torch.autograd.set_detect_anomaly(True).
I also encountered this problem, but I solved it.You only need to modify the eighteenth line "nn.Dropout(0.5,inplace=True)" in the refine.py file to "nn.Dropout(0.5,inplace=False)", and the problem can be solved. like this:
1、我建议你找common/arguments.py; 2, “parser.add_argument('--keypoints', default='cpn_ft_h36m_dbb', type=str)”-----“parser.add_argument('--keypoints', default='gt', type=str)”; 3、“python main.py --frames 1 --batch_size 256”,训练20个epoch后,添加refine模块,“python main.py --frames 1 --batch_size 256 --refine --lr 1e-5 --previous_dir [你最好的模型保存路径]”4、“python main.py --test --previous_dir 'checkpoint/[测试模型文件名]' --frames 1”
@zhang-yuxian Hello, The paper doesn't mention that the Ground truth 2D keypoints used the refinement module, right? It probably wasn't added.
Hello, thank you very much for your work. Enter 2D ground truth, execute: Python main.py -- frames 1-- batch_ Size 256-- keypoints' gt '. The best result obtained is p1: 37.22, which is not as good as 34.6 in the paper. May I ask what is causing this? Looking forward to your reply, thank you. @Vegetebird
@jianlai123-123 Hello, have you solved it? Can 2DGT achieve 34.2 as mentioned in the paper?
This is one of the files I obtained after using "python main.py --frames 243 --batch_size 256", and the train.log file is empty
and this is my training process