Spatial-Temporal Data Analysis on Graph Convolutional Network
Baseline Result
| Dataset |
Model |
MAE |
Parameter |
| METR-LA |
STGCN(pytorch) |
3.982 |
Epoch = 1000 |
Data
METR-LA and PEMS-BAY
| Dataset |
Node num |
Time |
Duration |
Time slot |
Scene |
| METR-LA |
207 |
2012.03.01~2012.6.27 |
4 months |
5mins |
Loop detecors in highway |
| PEMS-BAY |
325 |
2017.01.01~2017.06.30 |
6 months |
5mins |
Sensors in Bay Area |
| PEMSD7 |
228 |
Workday of 2012.05-2012.06 |
44 days |
5mins |
Sensors in California |
| Data |
Info |
| distance_la_2012.csv |
两两节点之间的距离 |
| graph_sensor_ids |
所有节点的id list |
| graph_sensor_locations |
所有节点的坐标 |
| metra_la.csv |
每个节点在每个时刻的速度信息 |
Q_Traffic Dataset Link
The data provider gives 15073 central road and its neighbour information, so there are totally 45148 roads data(speed/road netwok/gps) provided. The total time slot number is 5856(61days * 24hours * 4quarter).
| Filename |
Dimension |
Instance |
Tips |
| traffic_speed_sub-dataset |
3 * (5856*45148) |
road_id = 1562548955, timeslot_id = 0, speed = 41.3480687196 |
No headings, sep = ' ' |
| road_network_sub-dataset |
8 * 45148(-Heading) |
road_id = 1562548955, width = 30, direction = 3, snodeid = 1520445066, enodeid = 1549742690, length = 0.038, speedclass = 6, lanenum = 1 |
Headings, sep = '\t' |
| link_gps |
3 * 45418 |
road_id = 1562548955, longtitude = 116.367557, latitude = 39.899537 |
No headings, sep = ' ' |
| query_sub-dataset |
61 * 6 * N |
search_time = 2017-04-01 19:42:23, start_pos = (116.325461 40.036083), end_pos = (116.350811 40.090999), travel_time = 33 |
No headings, sep = ' ' or ',' |
| neighbours_1km.txt |
15073 * 11 |
road_id = xx, pre1, pre2, ..., pre5, next1, next2, ..., next5 |
|
Highways England network journey time and traffic flow data Link
Baseline Analysis
DCRNN
- Data pre-processing
- Train DCRNN model
- Comand line(The version of tensorflow-gpu must be higher than tensorflow):
tmux a -t dcrnn_baidu
source activate python3.6
cd ~/workspace/GCN/DCRNN-master
python dcrnn_train.py --config_filename=data/model/dcrnn_baidu.yaml
Basic Models
- ChebNet: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering
- STGCN: Spatio-Temporal Graph Convolutional Networks | For pytorch version: pytorch version
- DCRNN: Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting
- Multi-head Self Attention Model(AutoInt): AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
CSDN reference: AutoInt:使用Multi-head Self-Attention进行自动特征学习的CTR模型
Environmental Data
- Targeted source detection for environment data
Basic Methods
- K-SVD in Dictionary learning There are codes and some illustration.
- [osmnx guide]https://github.com/gboeing/osmnx-examples/tree/master/notebooks()
- python GIS
Tips
Tensorflow and CUDA compatible combinations
| version |
Python version |
cuDNN |
CUDA |
| tensorflow-gpu-1.14.0 |
python3.6 |
7.6 |
10.0 |