RuntimeError: CUDA out of memory
(aug_29) test_user@ncaiirl-Z490-GAMING-X:~/Desktop/junken$ python /home/test_user/Desktop/junken/jul_25/swin_unetr_run_in_terminal_25th_jul.py MONAI version: 1.2.0 Numpy version: 1.25.2 Pytorch version: 1.12.1+cu113 MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False MONAI rev id: c33f1ba588ee00229a309000e888f9817b4f1934 MONAI file: /home/test_user/anaconda3/envs/aug_29/lib/python3.10/site-packages/monai/init.py
Optional dependencies: Pytorch Ignite version: 0.4.11 ITK version: 5.3.0 Nibabel version: 5.1.0 scikit-image version: 0.21.0 Pillow version: 9.4.0 Tensorboard version: 2.14.0 gdown version: NOT INSTALLED or UNKNOWN VERSION. TorchVision version: NOT INSTALLED or UNKNOWN VERSION. tqdm version: 4.66.1 lmdb version: 1.4.1 psutil version: 5.9.5 pandas version: 2.0.3 einops version: 0.6.1 transformers version: NOT INSTALLED or UNKNOWN VERSION. mlflow version: NOT INSTALLED or UNKNOWN VERSION. pynrrd version: 1.0.0
For details about installing the optional dependencies, please visit: https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies
/tmp/tmpnvwh2hz9
monai.transforms.io.dictionary LoadImaged.init:image_only: Current default value of argument image_only=False has been deprecated since version 1.1. It will be changed to image_only=True in version 1.3.
Fri Sep 1 05:51:11 2023 Epoch: 0
Traceback (most recent call last):
File "/home/test_user/Desktop/junken/jul_25/swin_unetr_run_in_terminal_25th_jul.py", line 379, in
I am trying to reproduce following code from monai official website: [https://github.com/Project-MONAI/tutorials/blob/main/3d_segmentation/swin_unetr_brats21_segmentation_3d.ipynb]
Expected behavior A clear and concise description of what you expected to happen.
Screenshots If applicable, add screenshots to help explain your problem.
Environment (please complete the following information): - OS (aug_29) test_user@ncaiirl-Z490-GAMING-X:~/Desktop/junken$ /home/test_user/anaconda3/envs/aug_29/bin/python Python 3.10.12 (main, Jul 5 2023, 18:54:27) [GCC 11.2.0] on linux Type "help", "copyright", "credits" or "license" for more information.
import platform import psutil m": platform.system(), "CPU Cores": psutil.cpu_count(logical=False), "CPU Threads": psutil.cpu_count(logical=True), "RAM (GB)": round(psut>>> system_info = { ... "Operating System": platform.system(), ... "CPU Cores": psutil.cpu_count(logical=False), ... "CPU Threads": psutil.cpu_count(logical=True), ... "RAM (GB)": round(psutil.virtual_memory().total / (1024 ** 3), 2), ... }
print("System Specifications:") System Specifications: for key, value in system_info.items(): ... print(f"{key}: {value}") ... Operating System: Linux CPU Cores: 8 CPU Threads: 16 RAM (GB): 7.67
- Python version - MONAI version [e.g. git commit hash] - CUDA/cuDNN version
import monai on__) import torch print("CUDA Version:", torch.version.cuda) print("cuDNN Version:", torch.backends.cudnn.version()) print("MONAI Version:", monai.version) MONAI Version: 1.2.0 import torch print("CUDA Version:", torch.version.cuda) CUDA Version: 11.3 print("cuDNN Version:", torch.backends.cudnn.version()) cuDNN Version: 8302
- GPU models and configuration
import torch print("GPU Models and Configuration:") GPU Models and Configuration: for i in range(torch.cuda.device_count()): ... print(f"GPU {i}: {torch.cuda.get_device_name(i)}") ... GPU 0: NVIDIA GeForce RTX 3080
def get_gpu_info(): ... num_gpus = torch.cuda.device_count() ... gpu_info = [] ... for i in range(num_gpus): ... gpu_name = torch.cuda.get_device_name(i) ... gpu_memory = round(torch.cuda.get_device_properties(i).total_memory / (1024 ** 3), 2) ... gpu_info.append(f"GPU {i}: {gpu_name} (VRAM {gpu_memory} GB)") ... return gpu_info ... print("GPU Information:") GPU Information: for info in get_gpu_info(): ... print(info) ... GPU 0: NVIDIA GeForce RTX 3080 (VRAM 9.78 GB)
nvidia-smi shows the following output after running tutorial:
(base) test_user@ncaiirl-Z490-GAMING-X:~$ nvidia-smi
Fri Sep 1 06:32:31 2023
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 470.199.02 Driver Version: 470.199.02 CUDA Version: 11.4 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 NVIDIA GeForce ... Off | 00000000:01:00.0 On | N/A |
| 0% 44C P8 32W / 370W | 9857MiB / 10014MiB | 3% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=============================================================================| | 0 N/A N/A 44287 G /usr/lib/xorg/Xorg 35MiB | | 0 N/A N/A 93228 G /usr/lib/xorg/Xorg 131MiB | | 0 N/A N/A 93945 G /usr/bin/gnome-shell 53MiB | | 0 N/A N/A 94329 G ...RendererForSitePerProcess 71MiB | | 0 N/A N/A 97625 C ...a3/envs/aug_29/bin/python 9549MiB | +-----------------------------------------------------------------------------+
nvtop shows following output after running above mentionedabove-mentioned:
this tutorial run oky on google colab.
Hi, Im also encountering the same issue when trying to run in my system with nvidia rtx3090 gpu. Have you found the solution for this? If yes, then can you please share? Thank you so much
I tried to but didn't work. So went for google colab.