benchmark
benchmark copied to clipboard
SEResnet50 模型定义问题
在CV的benchmark上,SE-ResNeXt50模型的定义地址为 https://github.com/PaddlePaddle/models/blob/develop/PaddleCV/image_classification/models/se_resnext.py的文件。有以下代码: if layers == 50: cardinality = 32 reduction_ratio = 16 depth = [3, 4, 6, 3] num_filters = [128, 256, 512, 1024]
conv = self.conv_bn_layer(
input=input,
num_filters=64,
filter_size=7,
stride=2,
act='relu',
name='conv1', )
conv = fluid.layers.pool2d(
input=conv,
pool_size=3,
pool_stride=2,
pool_padding=1,
pool_type='max',
use_cudnn=False)
根据这里的定义 weight 的深度结构是[3, 4, 6, 3] 个数定义为 [128, 256, 512, 1024] 标准的Resnet 50的 weights 定义应该是 [256,512,1024,2048], 是不是相当于SE-RESNET是为了降低计算的开销,所以做了简化设计?
SE-ResNeXt50和Resnet 50是两个不同的模型,SE-ResNeXt50在channel定义上比Resnet 50要小