Quantum
Quantum copied to clipboard
import numpy as np import paddle import paddle_quantum as pq from paddle_quantum.ansatz.circuit import Circuit from paddle_quantum.visual import plot_state_in_bloch_sphere num_qubit = 1 # 设定量子比特数 num_sample = 2000 # 设定采样次数 outputs_yz =...
Since the forward method in the example [Quantum Neural Network Approximating Functions](https://github.com/PaddlePaddle/Quantum/blob/master/tutorials/machine_learning/QApproximating_EN.ipynb) uses a for loop, it's quite slow when the depth of the circuit is large. I want to...
Hi, I wanted to inquire about the availability of the code for training models in Paddle-quantum, specifically related to medical image classification as found in this link: https://github.com/PaddlePaddle/Quantum/blob/master/applications/medical_image_classification/introduction_en.ipynb. I was...
Hello, Has something changed in the API? This worked before. `! python -m pip install paddlepaddle paddle-quantum`
Hello, For a tutorial, I am trying to do something very simple, calculating the expectation value of: Instead of: ``` hamiltonian = random_pauli_str_generator(N, terms=1) ``` How can i specify my...
(此 ISSUE 为 PaddlePaddle Hackathon 活动的任务 ISSUE,更多详见[PaddlePaddle Hackathon](https://www.paddlepaddle.org.cn/PaddlePaddleHackathon?fr=quantumg)) [Paddle Quantum(量桨)](https://qml.baidu.com/)是基于百度飞桨开发的量子机器学习工具集,支持量子神经网络的搭建与训练,提供易用的量子机器学习开发套件与量子优化、量子化学等前沿量子应用工具集,使得百度飞桨也因此成为国内首个支持量子机器学习的深度学习框架。 【任务说明】 - 任务标题:时间演化电路的性能优化 - 技术标签:量子计算、哈密顿量 - 任务难度:中等 - 详细描述: 哈密顿量模拟,指的是模拟一个量子系统随时间演化的过程。根据量子力学的基本公理,对于不含时的哈密顿量而言,系统的时间演化过程可以由算符 exp(-iHt) 进行描述。目前,量桨中实现了基于 product formula 的数字化哈密顿量模拟,可以根据泡利哈密顿量来创建相应的模拟时间演化电路。在这个任务中,你需要实现对时间演化电路的性能优化。目前,该模块的实现方法是对于泡利哈密顿量中的每一项分别搭建一个旋转电路,其具体方法可以参考 1 中的 4.7.3 节。实际上,对于一些特殊的两量子比特项而言,文献 2...
【PaddlePaddle Hackathon - rfc 提交】在 Paddle 中实现基于量子卷积神经网络的图片分类 飞桨团队你好, 队伍名称:hackphi 任务序号:82 任务题目:基于量子卷积神经网络的图片分类
【PaddlePaddle Hackathon】78 实现密度矩阵可视化 相关技术文档:https://github.com/StarringJgw/Quantum/blob/relating_documents/tech_document.md 项目单测文件:https://github.com/StarringJgw/Quantum/blob/relating_documents/graph_test.py