EloML
EloML copied to clipboard
R package EloML: Elo rating system for machine learning models
Elo rating system for Machine Learning models 
Overview
The EloML package provides Elo rating system for machine learning models. Elo Predictive Power (EPP) score helps to assess model performance based Elo ranking system.
Find more in the EPP: interpretable score of model predictive power arxiv paper.
Installation
Installation time should not exceed 1 minute.
# Install the the development version from GitHub:
# install.packages("devtools")
devtools::install_github("ModelOriented/EloML")
Usage
The following example takes less than 20 seconds to complete.
Load EloML library and benchmark data. In the example we use the data frame auc_data from the EloML package. The data used for EPP calculations should be a data frame, where first 3 columns correspond to: Player (model), Round (split), Score (auc).
library(EloML)
data(auc_scores)
head(auc_scores)
# model split auc
# 1 catboost_1 1 0.9824724
# 2 catboost_1 2 0.9820267
# 3 catboost_1 3 0.9801000
# 4 catboost_1 4 0.9848932
# 5 catboost_1 5 0.9845456
# 6 catboost_1 6 0.9858062
To calculate EPP use calculate_epp function. For more options see help of the function ?calculate_epp.
calculate_epp(auc_scores)
# Head of Players EPP:
# player epp
# 1 catboost_1 -0.793627
# 2 catboost_2 2.915507
# 3 catboost_3 -1.990134
# 4 gbm_1 -20.381584
# 5 gbm_10 1.664303
# 6 gbm_11 2.714073
# Type of estimation: glmnet