EMMA
EMMA copied to clipboard
Evaluation of Methods for dealing with Missing data in Machine Learning algorithms
We are in the process of overhauling the `paradox` package, on which your `NADIA` package depends: At some point in the near future, we are going to merge [this PR](https://github.com/mlr-org/paradox/pull/350)....
Is there a way to set `return_one` to `FALSE` in `PipeOpMice`, so that I get `m` different imputed datasets? And then how do I feed each imputed dataset into a...
Method: rf Performance: 5/10 Test logs: [link](https://github.com/ModelOriented/EMMA/tree/master/EMMA_package/tests/mice_A/logs2) Task: 3705 > INFO [23:44:57.363] Applying learner 'removeconstants_before.collapsefactors.imput_mice_A.removeconstants_after.encodeimpact.classif.glmnet' on task 'Task 3705: autoHorse (Supervised Classification)' (iter 1/5) > Ostrzeżenie: Number of logged events:...
Method: rf Performance: 5/10 Test logs: [link](https://github.com/ModelOriented/EMMA/tree/master/EMMA_package/tests/mice_A/logs2) Task: 190403 > INFO [23:47:01.398] Applying learner 'removeconstants_before.collapsefactors.imput_mice_A.removeconstants_after.encodeimpact.classif.glmnet' on task 'Task 190403: regime_alimentaire (Supervised Classification)' (iter 2/5) > Error in randomForest.default(x = xobs,...
Method: rf Performance: 5/10 Test logs: [link](https://github.com/ModelOriented/EMMA/tree/master/EMMA_package/tests/mice_A/logs2) Task: 54 > INFO [23:47:59.449] Applying learner 'removeconstants_before.collapsefactors.imput_mice_A.removeconstants_after.encodeimpact.classif.glmnet' on task 'Task 54: hepatitis (Supervised Classification)' (iter 4/5) > Ostrzeżenie w poleceniu 'randomForest.default(x =...
Method: midastouch Performance: 3/10 Test logs: [link](https://github.com/ModelOriented/EMMA/tree/master/EMMA_package/tests/mice_A/logs2) Task: 3807, 190403, 54 > INFO [23:25:50.400] Applying learner 'removeconstants_before.collapsefactors.imput_mice_A.removeconstants_after.encodeimpact.classif.glmnet' on task 'Task 3807: echoMonths (Supervised Classification)' (iter 1/5) > Ostrzeżenie w poleceniu...
Test purpose: usage of auto-optimization of parameters in missForest, mice and missRanger. Test script: [script](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_4/test_script.R) Test logs: [logs](https://github.com/ModelOriented/EMMA/tree/master/EMMA_package/tests/round_4) Performance: all pipes performed successful imputation in 5/5 tasks
Test no. 3 for both PipePreproc and PipeImpute versions on a sample of 10 tasks with missings. This time two setups were tested: with and without dataset preprocessing step. For...
test R script: [script](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_2/test_script.R) PipeOpTaskPreproc version results: Amelia (PipeOpTaskPreproc) * log: [amelia log](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_2/logs_pipe_preproc/imput_Amelia.txt) * successful usage: 3/10 tasks VIM_IRMI (PipeOpTaskPreproc) * log: [vim_irmi log](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_2/logs_pipe_preproc/imput_VIM_IRMI.txt) * successful usage: 3/10 tasks missForest...
* test R script: [script](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_2/test_script.R) * log: [missMDA_MCA_PCA_FMAD log](https://github.com/ModelOriented/EMMA/blob/master/EMMA_package/tests/round_2/logs_pipe_preproc/imput_missMDA_MCA_PCA_FMAD.txt) * successful usage: 2/10 tasks > INFO [22:32:23.834] Applying learner 'imput_missMDA_MCA_PCA_FMAD.encodeimpact.classif.glmnet' on task 'Task 3722: hungarian (Supervised Classification)' (iter 1/5) >...