errors in the integrate function
It looks like you are missing a * before (1+x).
In the future, could you please post code, not screenshots, to make it easier for others to reproduce your report?
Thanks. That seems more errors.
integrate(x^(1/2)*(1+x)^(-23/10),(x,0,1))
PyError ($(Expr(:escape, :(ccall(#= /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44 =# @pysym(:PyObject_Call), PyPtr, (PyPtr, PyPtr, PyPtr), o, pyargsptr, kw))))) <class 'sympy.integrals.meijerint._CoeffExpValueError'>
_CoeffExpValueError('expr not of form ax**b: 0.857109621959463')
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/integrals.py", line 1477, in integrate
return integral.doit(**doit_flags)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/integrals.py", line 541, in doit
function, xab[0], **eval_kwargs)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/integrals.py", line 1012, in _eval_integral
h = meijerint_indefinite(g, x)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/meijerint.py", line 1621, in meijerint_indefinite
res = _meijerint_indefinite_1(f.subs(x, x + a), x)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/meijerint.py", line 1646, in _meijerint_indefinite_1
gs = _rewrite1(f, x)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/meijerint.py", line 1569, in _rewrite1
g = _rewrite_single(g, x, recursive)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/meijerint.py", line 1472, in _rewrite_single
exponents_only=True), x)
File "/Users/gangchen/.julia/conda/3/lib/python3.7/site-packages/sympy/integrals/meijerint.py", line 337, in _get_coeff_exp
raise _CoeffExpValueError('expr not of form ax**b: %s' % expr)
Stacktrace: [1] pyerr_check at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/exception.jl:60 [inlined] [2] pyerr_check at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/exception.jl:64 [inlined] [3] macro expansion at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/exception.jl:84 [inlined] [4] __pycall!(::PyCall.PyObject, ::Ptr{PyCall.PyObject_struct}, ::PyCall.PyObject, ::Ptr{Nothing}) at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:44 [5] _pycall!(::PyCall.PyObject, ::PyCall.PyObject, ::Tuple{Sym,Tuple{Sym,Int64,Int64}}, ::Int64, ::Ptr{Nothing}) at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:29 [6] _pycall!(::PyCall.PyObject, ::PyCall.PyObject, ::Tuple{Sym,Tuple{Sym,Int64,Int64}}, ::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}) at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:11 [7] #call#111(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::PyCall.PyObject, ::Sym, ::Vararg{Any,N} where N) at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89 [8] (::PyCall.PyObject)(::Sym, ::Vararg{Any,N} where N) at /Users/gangchen/.julia/packages/PyCall/ttONZ/src/pyfncall.jl:89 [9] #integrate#212(::Base.Iterators.Pairs{Union{},Union{},Tuple{},NamedTuple{(),Tuple{}}}, ::Function, ::Sym, ::Tuple{Sym,Int64,Int64}) at /Users/gangchen/.julia/packages/SymPy/tgSHx/src/importexport.jl:102 [10] integrate(::Sym, ::Tuple{Sym,Int64,Int64}) at /Users/gangchen/.julia/packages/SymPy/tgSHx/src/importexport.jl:102 [11] top-level scope at In[4]:1
Although the int power function works.
integrate(x^(2)*(1+x)^(-3),(x,0,1))
−5/8+log(2)
In general, you should use rational exponents to avoid floating point round off. However, in this case once doing so, the integral takes forever to compute. Even on sympygamma it fails. The integration with Wolfram Alpha is just better.