[Bug] serve的时候event loop报错
Checklist
- [X] 1. I have searched related issues but cannot get the expected help.
- [X] 2. The bug has not been fixed in the latest version.
- [X] 3. Please note that if the bug-related issue you submitted lacks corresponding environment info and a minimal reproducible demo, it will be challenging for us to reproduce and resolve the issue, reducing the likelihood of receiving feedback.
Describe the bug
在gradio上使用VLM的时候,第一轮图文对话可以正常完成,但是第二轮(也是图文)就会报错,试了几次都是这样。貌似是多轮对话中输入多次图片会有问题。
Reproduction
lmdeploy 0.5.1从wheel安装,使用的模型是InternVL2-2B-AWQ
Environment
sys.platform: linux
Python: 3.8.19 (default, Mar 20 2024, 19:58:24) [GCC 11.2.0]
CUDA available: True
MUSA available: False
numpy_random_seed: 2147483648
GPU 0: Quadro RTX 5000
CUDA_HOME: None
GCC: gcc (Ubuntu 7.5.0-3ubuntu1~18.04) 7.5.0
PyTorch: 2.2.2+cu118
PyTorch compiling details: PyTorch built with:
- GCC 9.3
- C++ Version: 201703
- Intel(R) oneAPI Math Kernel Library Version 2022.2-Product Build 20220804 for Intel(R) 64 architecture applications
- Intel(R) MKL-DNN v3.3.2 (Git Hash 2dc95a2ad0841e29db8b22fbccaf3e5da7992b01)
- OpenMP 201511 (a.k.a. OpenMP 4.5)
- LAPACK is enabled (usually provided by MKL)
- NNPACK is enabled
- CPU capability usage: AVX512
- CUDA Runtime 11.8
- NVCC architecture flags: -gencode;arch=compute_50,code=sm_50;-gencode;arch=compute_60,code=sm_60;-gencode;arch=compute_70,code=sm_70;-gencode;arch=compute_75,code=sm_75;-gencode;arch=compute_80,code=sm_80;-gencode;arch=compute_86,code=sm_86;-gencode;arch=compute_37,code=sm_37;-gencode;arch=compute_90,code=sm_90
- CuDNN 8.7
- Magma 2.6.1
- Build settings: BLAS_INFO=mkl, BUILD_TYPE=Release, CUDA_VERSION=11.8, CUDNN_VERSION=8.7.0, CXX_COMPILER=/opt/rh/devtoolset-9/root/usr/bin/c++, CXX_FLAGS= -D_GLIBCXX_USE_CXX11_ABI=0 -fabi-version=11 -fvisibility-inlines-hidden -DUSE_PTHREADPOOL -DNDEBUG -DUSE_KINETO -DLIBKINETO_NOROCTRACER -DUSE_FBGEMM -DUSE_QNNPACK -DUSE_PYTORCH_QNNPACK -DUSE_XNNPACK -DSYMBOLICATE_MOBILE_DEBUG_HANDLE -O2 -fPIC -Wall -Wextra -Werror=return-type -Werror=non-virtual-dtor -Werror=bool-operation -Wnarrowing -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-unused-parameter -Wno-unused-function -Wno-unused-result -Wno-strict-overflow -Wno-strict-aliasing -Wno-stringop-overflow -Wsuggest-override -Wno-psabi -Wno-error=pedantic -Wno-error=old-style-cast -Wno-missing-braces -fdiagnostics-color=always -faligned-new -Wno-unused-but-set-variable -Wno-maybe-uninitialized -fno-math-errno -fno-trapping-math -Werror=format -Wno-stringop-overflow, LAPACK_INFO=mkl, PERF_WITH_AVX=1, PERF_WITH_AVX2=1, PERF_WITH_AVX512=1, TORCH_VERSION=2.2.2, USE_CUDA=ON, USE_CUDNN=ON, USE_EXCEPTION_PTR=1, USE_GFLAGS=OFF, USE_GLOG=OFF, USE_MKL=ON, USE_MKLDNN=ON, USE_MPI=OFF, USE_NCCL=1, USE_NNPACK=ON, USE_OPENMP=ON, USE_ROCM=OFF, USE_ROCM_KERNEL_ASSERT=OFF,
TorchVision: 0.17.2+cu118
LMDeploy: 0.5.1+
transformers: 4.42.4
gradio: 4.38.1
fastapi: 0.111.1
pydantic: 2.8.2
triton: 2.2.0
NVIDIA Topology:
GPU0 CPU Affinity NUMA Affinity
GPU0 X 0-15 N/A
Legend:
X = Self
SYS = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
PHB = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
PXB = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
PIX = Connection traversing at most a single PCIe bridge
NV# = Connection traversing a bonded set of # NVLinks
Error traceback
Traceback (most recent call last):
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/queueing.py", line 536, in process_events
response = await route_utils.call_process_api(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/route_utils.py", line 276, in call_process_api
output = await app.get_blocks().process_api(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/blocks.py", line 1897, in process_api
result = await self.call_function(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/blocks.py", line 1495, in call_function
prediction = await utils.async_iteration(iterator)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/utils.py", line 661, in async_iteration
return await iterator.__anext__()
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/utils.py", line 654, in __anext__
return await anyio.to_thread.run_sync(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/anyio/to_thread.py", line 56, in run_sync
return await get_async_backend().run_sync_in_worker_thread(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 2177, in run_sync_in_worker_thread
return await future
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/anyio/_backends/_asyncio.py", line 859, in run
result = context.run(func, *args)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/utils.py", line 637, in run_sync_iterator_async
return next(iterator)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/gradio/utils.py", line 799, in gen_wrapper
response = next(iterator)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/lmdeploy/serve/gradio/vl.py", line 119, in chat
inputs = _run_until_complete(
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/lmdeploy/pytorch/engine/request.py", line 78, in _run_until_complete
return event_loop.run_until_complete(future)
File "uvloop/loop.pyx", line 1517, in uvloop.loop.Loop.run_until_complete
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/lmdeploy/serve/vl_async_engine.py", line 66, in _get_prompt_input
features = await self.vl_encoder.async_infer(images)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/lmdeploy/vl/engine.py", line 171, in async_infer
self.req_que.put_nowait(item)
File "/home/jacobz/.conda/envs/lmdeploy/lib/python3.8/site-packages/lmdeploy/vl/engine.py", line 124, in req_que
raise RuntimeError('Current event loop is different from'
RuntimeError: Current event loop is different from the one bound to loop task!
补充下,我这里第一轮输入图+问,后续轮次使用纯文字输出正常,但是点击reset以后,重新上传图片提问,也会报同样的错误
似乎gradio使用了不同的event loop,pytorch backend 应该也会有类似的问题。
gradio 4.0 后引入了好几个问题了。https://github.com/InternLM/lmdeploy/pull/2103 reset 改成用新session就没问题了。
@iWasOmen 试试可以先用起来
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。
@iWasOmen 试试可以先用起来
我在internlm-xcomposer2d5-7b-4bit使用这个方法问题没有改善
我试了下是OK的,你是怎么操作的。 @yaaisinile
我试了下是OK的,你是怎么操作的。 @yaaisinile
按你提交的修改内容修改了文件,然后执行命令python gradio_demo/gradio_demo_chat.py --code_path /home/ai/Documents/InternLM-XComposer/internlm-xcomposer2d5-7b-4bit/ 打开demo 127.0.0.1:6006,第一轮上传图片后提问正常,再传一张图片后就报错误了
好像 pip uninstall uvloop,代码就都能跑了
uvloop,代码就都能跑了
我把engine.py第 101 行 asyncio.set_event_loop(self._loop) 改为 asyncio.set_event_loop(asyncio.new_event_loop()) 后可以多轮对话不报错了
好像
pip uninstall uvloop,代码就都能跑了
感谢回复,实测卸载uvloop也有效
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。
@iWasOmen 试试可以先用起来
这个pr能修复多轮多图对话的问题吗?我卸载uvloop后多轮多图对话还是会报错
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。 @iWasOmen 试试可以先用起来
这个pr能修复多轮多图对话的问题吗?我卸载uvloop后多轮多图对话还是会报错
试下把 engine.py第 101 行 asyncio.set_event_loop(self._loop) 改为 asyncio.set_event_loop(asyncio.new_event_loop())
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。 @iWasOmen 试试可以先用起来
这个pr能修复多轮多图对话的问题吗?我卸载uvloop后多轮多图对话还是会报错
试下把 engine.py第 101 行 asyncio.set_event_loop(self._loop) 改为 asyncio.set_event_loop(asyncio.new_event_loop())
这个也不行,还是报错
报错内容呢?
报错是一样的
会跟Python版本有关吗?我看asyncio.Queue的构造函数在3.10有变化
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。 @iWasOmen 试试可以先用起来
这个pr能修复多轮多图对话的问题吗?我卸载uvloop后多轮多图对话还是会报错
试下把 engine.py第 101 行 asyncio.set_event_loop(self._loop) 改为 asyncio.set_event_loop(asyncio.new_event_loop())
这个也不行,还是报错
我试完卸载uvloop后也不行了,再装uvloop都不行
gradio 4.0 后引入了好几个问题了。#2103 reset 改成用新session就没问题了。 @iWasOmen 试试可以先用起来
这个pr能修复多轮多图对话的问题吗?我卸载uvloop后多轮多图对话还是会报错
试下把 engine.py第 101 行 asyncio.set_event_loop(self._loop) 改为 asyncio.set_event_loop(asyncio.new_event_loop())
这个也不行,还是报错
修改engine.py文件,把128-129行屏蔽掉加一行self._create_event_loop_task()可以暂时避免,不知道会影响多用户使用不
同样的错误,把InternVL2-4B 部署成服务上线的时候,会报 Current event loop is different from the one bound to loop task! 错误
一劳永逸的方法是 https://github.com/InternLM/lmdeploy/pull/1930 修改的内容改回去,用低版本的 gradio。
一劳永逸的方法是 #1930 修改的内容改回去,用低版本的 gradio。
改回去了,用gradio 3.50.2,还是报“RuntimeError: Current event loop is different from the one bound to loop task!”
@irexyc 帮忙看下?
没有用到gradio,利用lmdeploy去推InternVL2的模型,无论backend设置成torch或者turbomind,部署成服务,调用的时候都会遇到这个报错,请问是否是lmdeploy某个版本更新之后导致的错误?目前尝试了最新的0.5.2 0.5.2.post 都有这个问题
@77h2l 如果说不是用的lmdeploy本身的服务功能,而是将pipeline接口封装为服务的话。
需要在创建pipeline的时候,增加参数 pipe = pipeline('...', vision_config=VisonConfig(thread_safe=True)), pytorch backend也会有类似的问题。
另外如果调用的是 call、stream_infer 接口的话,因为目前没有提供session_id的参数,多个请求可能并不会有迸发。
@77h2l 如果说不是用的lmdeploy本身的服务功能,而是将pipeline接口封装为服务的话。
需要在创建pipeline的时候,增加参数 pipe = pipeline('...', vision_config=VisonConfig(thread_safe=True)), pytorch backend也会有类似的问题。
另外如果调用的是 call、stream_infer 接口的话,因为目前没有提供session_id的参数,多个请求可能并不会有迸发。
对的,目前的应用场景就是使用pipeline的接口,然后在外层通过其他专门的serving框架用来部署服务,尝试了几个版本都有这个问题,我试一下您说的这个参数,另外降低lmdeploy到更低的版本能解决这个问题吗?
@77h2l 就针对event_loop 来讲,PytorchEngineConfig / VisionConfig 都需要设置这个参数,降版本没意义,因为这个参数就是之前的功能。
出现这个问题应该是你多线程使用了。如果你能用协程的话,可以直接用 pipeline.generate 这个入口。
@irexyc 您好,self.pipe = pipeline(self.model, model_name=self.model_name, chat_template_config=self.chat_template_config, backend_config=self.backend_config, vision_config=VisionConfig(thread_safe=True)) vision_config这个参数设置了以后,重新部署的服务接口,推理部分直接超时不返回结果了,请问在类似多线程的环境下,报错和超时这两个问题该如何避免呢?
同样的问题,期待下一个版本能解决这个问题
同遇到这个问题,就是本地模拟用python双线程去调用pipeline预测,就会出现这个问题同样的报错,试了上面的都不行,大佬们现在有解决办法吗?
@ltt-gddxz 可以给个最小复现脚本。
@AllentDan 抱歉,我这不好提供完整代码,这里给出主程序部分,inference函数就是基于lmdeploy的pipeline进行预测(用的InternVL2-1B, 可参考官方推理代码),大佬这边应该可以复现。
- demo.py
if __name__ == '__main__':
thread_num = 2
threads = []
for i in range(thread_num):
thread = threading.Thread(target=inference)
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
print("Main finished.")
- main requirements
torch==2.3.1
transformers==4.46.3
lmdeploy==0.6.3
- error
File "/usr/local/lib/python3.8/dist-packages/lmdeploy/vl/engine.py", line 129, in req_que
raise RuntimeError('Current event loop is different from'
RuntimeError: Current event loop is different from the one bound to loop task!