Type Error in GPTLMHeadModel
I am having a go at running inference and evaluation for this model, and running into a TypeError in GPTLMHeadModel:
In [1]: import torch
...: from transformers import AutoTokenizer
...: from based.models.gpt import GPTLMHeadModel
...:
...: tokenizer = AutoTokenizer.from_pretrained("gpt2")
...: model = GPTLMHeadModel.from_pretrained_hf("hazyresearch/based-360m").to("cuda", dtype=torch.float
...: 16)
tokenizer_config.json: 100%|███████████████████████████████████████████| 26.0/26.0 [00:00<00:00, 260kB/s]
config.json: 100%|██████████████████████████████████████████████████████| 665/665 [00:00<00:00, 8.64MB/s]
vocab.json: 100%|███████████████████████████████████████████████████| 1.04M/1.04M [00:00<00:00, 12.1MB/s]
merges.txt: 100%|█████████████████████████████████████████████████████| 456k/456k [00:00<00:00, 8.99MB/s]
tokenizer.json: 100%|███████████████████████████████████████████████| 1.36M/1.36M [00:00<00:00, 17.8MB/s]
config.json: 100%|██████████████████████████████████████████████████| 2.86k/2.86k [00:00<00:00, 36.7MB/s]
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
Cell In[1], line 6
3 from based.models.gpt import GPTLMHeadModel
5 tokenizer = AutoTokenizer.from_pretrained("gpt2")
----> 6 model = GPTLMHeadModel.from_pretrained_hf("hazyresearch/based-360m").to("cuda", dtype=torch.float16)
File /based/models/gpt.py:468, in GPTPreTrainedModel.from_pretrained_hf(cls, pretrained_model_name, device, **kwargs)
466 config_data = load_config_hf(pretrained_model_name)
467 config = GPT2Config(**config_data)
--> 468 model = cls(config, device=device, **kwargs)
469 state_dict = load_state_dict_hf(pretrained_model_name, device=device)
471 # remove the 'model.' prefix from the keys
File /based/models/gpt.py:741, in GPTLMHeadModel.__init__(self, config, process_group, device, dtype)
739 super().__init__(config)
740 self.process_group = process_group
--> 741 self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
742 self.tie_word_embeddings = getattr(config, "tie_word_embeddings", True)
743 lm_head_bias = getattr(config, "lm_head_bias", False)
File /based/models/gpt.py:585, in GPTModel.__init__(self, config, process_group, device, dtype)
569 self.embeddings = ParallelGPT2Embeddings(
570 config.hidden_size,
571 vocab_size,
(...)
575 **factory_kwargs,
576 )
578 # We change the order of dropout, residual and layer norm:
579 # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
580 # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
581 # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
582 # nn.Dropout probabilities are changed.
583 # This is for performance reason: we can fuse dropout + add + layer_norm.
584 self.layers = nn.ModuleList(
--> 585 [
586 create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
587 for i in range(config.num_hidden_layers)
588 ]
589 )
590 self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
591 if self.fused_dropout_add_ln:
File /based/models/gpt.py:586, in <listcomp>(.0)
569 self.embeddings = ParallelGPT2Embeddings(
570 config.hidden_size,
571 vocab_size,
(...)
575 **factory_kwargs,
576 )
578 # We change the order of dropout, residual and layer norm:
579 # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
580 # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
581 # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
582 # nn.Dropout probabilities are changed.
583 # This is for performance reason: we can fuse dropout + add + layer_norm.
584 self.layers = nn.ModuleList(
585 [
--> 586 create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
587 for i in range(config.num_hidden_layers)
588 ]
589 )
590 self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
591 if self.fused_dropout_add_ln:
File /based/models/gpt.py:371, in create_block(config, layer_idx, process_group, device, dtype, **kwargs)
369 mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
370 use_rms_norm = getattr(config, "rms_norm", False)
--> 371 norm_cls = partial(
372 nn.LayerNorm if not use_rms_norm else RMSNorm,
373 eps=config.layer_norm_epsilon,
374 **factory_kwargs,
375 )
376 # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
377 residual_in_fp32 = getattr(config, "residual_in_fp32", False)
TypeError: the first argument must be callable
For reproducibility, I have been running this in a docker container:
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
RUN apt-get update && apt-get install -y \
apt-utils \
python3.10 \
python3-pip \
git \
&& rm -rf /var/lib/apt/lists/*
RUN pip install --upgrade pip
RUN pip install \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
--index-url https://download.pytorch.org/whl/cu118 # due to observed causal-conv1d dependency
RUN pip install \
jupyter==1.0.0 \
hydra-core==1.3.2
RUN pip install jupyter
COPY . .
RUN pip install .
Any idea what could be going wrong here?
Hi, I think it's because this RMSNorm is being set to None https://github.com/HazyResearch/based/blob/e8de5648f7e84248be8ebc1499e817641b0f577b/based/models/gpt.py#L371
Due to the import structure here: https://github.com/HazyResearch/based/blob/e8de5648f7e84248be8ebc1499e817641b0f577b/based/models/gpt.py#L52
The options are to
- install the norm from flash attention here: https://github.com/Dao-AILab/flash-attention/tree/main/csrc/layer_norm
- set it to import RMSNorm from here: https://github.com/HazyResearch/based/blob/master/based/ops/triton/layer_norm.py, by uncommenting this line: https://github.com/HazyResearch/based/blob/e8de5648f7e84248be8ebc1499e817641b0f577b/based/models/gpt.py#L57
Sorry for the difficulty -- we will fix the install / instructions for this
No worries, and thanks for the speedy reply. Your guidance helped me get past the above error by installing the norm from flash-attn, but there seem to be more undocumented dependency issues:
root@d75213223120:/app# python3 test_script.py
tokenizer_config.json: 100%|██████████████████████████████████████████████| 26.0/26.0 [00:00<00:00, 149kB/s]
config.json: 100%|█████████████████████████████████████████████████████████| 665/665 [00:00<00:00, 8.40MB/s]
vocab.json: 100%|██████████████████████████████████████████████████████| 1.04M/1.04M [00:00<00:00, 9.97MB/s]
merges.txt: 100%|████████████████████████████████████████████████████████| 456k/456k [00:00<00:00, 28.5MB/s]
tokenizer.json: 100%|██████████████████████████████████████████████████| 1.36M/1.36M [00:00<00:00, 9.81MB/s]
config.json: 100%|█████████████████████████████████████████████████████| 2.86k/2.86k [00:00<00:00, 35.0MB/s]
No module named 'causal_attention_cuda'
Traceback (most recent call last):
File "/app/test_script.py", line 6, in <module>
model = GPTLMHeadModel.from_pretrained_hf("hazyresearch/based-360m").to("cuda", dtype=torch.float16)
File "/app/based/models/gpt.py", line 468, in from_pretrained_hf
model = cls(config, device=device, **kwargs)
File "/app/based/models/gpt.py", line 741, in __init__
self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
File "/app/based/models/gpt.py", line 585, in __init__
[
File "/app/based/models/gpt.py", line 586, in <listcomp>
create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
File "/app/based/models/gpt.py", line 382, in create_block
block = Block(
File "/app/based/models/block.py", line 86, in __init__
self.mixer = mixer_cls(dim)
File "/app/based/models/mixers/slide_attention.py", line 357, in __init__
if fused_bias_fc and FusedDense is None: raise ImportError("fused_dense is not installed")
ImportError: fused_dense is not installed
I'm a little baffled, since it seems like FusedDense is being imported from flash_attn here:
https://github.com/HazyResearch/based/blob/e8de5648f7e84248be8ebc1499e817641b0f577b/based/models/mixers/slide_attention.py#L29
Are there additional subpackages within flash-attn that need to be installed?
For reference, here is my updated dockerfile:
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
RUN apt-get update && apt-get install -y \
apt-utils \
python3.10 \
python3-pip \
git \
&& rm -rf /var/lib/apt/lists/*
RUN pip install --upgrade pip
RUN pip install \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
--index-url https://download.pytorch.org/whl/cu118 # due to observed causal-conv1d dependency
RUN pip install \
jupyter==1.0.0 \
hydra-core==1.3.2 \
packaging==23.2 \
ninja==1.11.1.1
# RUN pip install 'git+https://github.com/Dao-AILab/flash-attention.git@6c9e60d'
RUN pip install 'git+https://github.com/Dao-AILab/flash-attention.git@6c9e60d#subdirectory=csrc/layer_norm'
# install apex
RUN pip install -v \
--disable-pip-version-check \
--no-cache-dir \
--no-build-isolation \
--config-settings "--build-option=--cpp_ext" \
--config-settings "--build-option=--cuda_ext" \
'git+https://github.com/NVIDIA/apex@b496d85'
# install based
RUN mkdir -p /app
WORKDIR /app
COPY . .
RUN pip install .
CMD python3 test_script.py
That line you pointed out requires this to be installed: https://github.com/Dao-AILab/flash-attention/tree/main/csrc/fused_dense_lib
Would recommend cloning flash-attention and python setup.py install within this directory An alternative workaround, without the install, is to, in the config, set fused_bias_fc = False
After some tweaking, I think I've got it working. I ended up using the HazyReasearch/flash-attention fork. For others trying via docker, this is the dockerfile I used:
FROM nvidia/cuda:11.8.0-devel-ubuntu22.04
ARG TORCH_CUDA_ARCH_LIST="8.0+PTX"
RUN apt-get update && apt-get install -y \
build-essential \
apt-utils \
python3.10 \
python3-pip \
git \
&& rm -rf /var/lib/apt/lists/*
RUN pip install --upgrade pip
RUN pip install \
torch==2.1.2 \
torchvision==0.16.2 \
torchaudio==2.1.2 \
--index-url https://download.pytorch.org/whl/cu118 # due to observed causal-conv1d dependency
RUN pip install \
jupyter==1.0.0 \
hydra-core==1.3.2 \
packaging==23.2 \
ninja==1.11.1.1
# install apex
RUN pip install -v \
--disable-pip-version-check \
--no-cache-dir \
--no-build-isolation \
--config-settings "--build-option=--cpp_ext" \
--config-settings "--build-option=--cuda_ext" \
'git+https://github.com/NVIDIA/apex@b496d85'
RUN pip install 'git+https://github.com/HazyResearch/[email protected]' --no-build-isolation
RUN pip install 'git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/fused_dense_lib' --no-build-isolation
RUN pip install 'git+https://github.com/HazyResearch/[email protected]#subdirectory=csrc/layer_norm' --no-build-isolation
# install based
RUN mkdir -p /app
WORKDIR /app
COPY . .
RUN pip install .
CMD python3 test_script.py
It requires NVIDIA docker tookit to run, with the command:
docker run --rm --runtime=nvidia --gpus all based
Hi! I got a similar problem while running the sample code:
import torch
from transformers import AutoTokenizer
from based.models.gpt import GPTLMHeadModel
tokenizer = AutoTokenizer.from_pretrained("gpt2")
model = GPTLMHeadModel.from_pretrained_hf("hazyresearch/based-360m").to("cuda", dtype=torch.float16)
input = tokenizer.encode("If I take one more step, it will be", return_tensors="pt").to("cuda")
output = model.generate(input, max_length=20)
print(tokenizer.decode(output[0]))
Error:
Traceback (most recent call last):
File "/home/melisarussak/based/inference_test.py", line 6, in <module>
model = GPTLMHeadModel.from_pretrained_hf("hazyresearch/based-360m").to("cuda", dtype=torch.float16)
File "/home/melisarussak/based/based/models/gpt.py", line 470, in from_pretrained_hf
model = cls(config, device=device, **kwargs)
File "/home/melisarussak/based/based/models/gpt.py", line 743, in __init__
self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
File "/home/melisarussak/based/based/models/gpt.py", line 587, in __init__
[
File "/home/melisarussak/based/based/models/gpt.py", line 588, in <listcomp>
create_block(config, layer_idx=i, process_group=process_group, **factory_kwargs)
File "/home/melisarussak/based/based/models/gpt.py", line 373, in create_block
norm_cls = partial(
TypeError: the first argument must be callable
so I used the Dockerfile given by @axelmagn and now I get:
No module named 'causal_attention_cuda'
Successfully imported the causal dot product kernel!
Could not import the FLA triton kernels...
Traceback (most recent call last):
File "/app/inference_test.py", line 9, in <module>
output = model.generate(input, max_length=20)
File "/app/based/generation.py", line 573, in generate
output = decode(
File "/usr/local/lib/python3.10/dist-packages/torch/utils/_contextlib.py", line 115, in decorate_context
return func(*args, **kwargs)
File "/app/based/generation.py", line 194, in decode
scores.append(get_logits(sequences[-1], inference_params))
File "/app/based/generation.py", line 155, in get_logits
logits = model(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/based/models/gpt.py", line 806, in forward
hidden_states = self.transformer(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/based/models/gpt.py", line 674, in forward
hidden_states, residual = layer(
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/based/models/block.py", line 189, in forward
hidden_states = self.mixer(hidden_states, position_ids=position_ids, decay=decay, **mixer_kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1518, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py", line 1527, in _call_impl
return forward_call(*args, **kwargs)
File "/app/based/models/mixers/linear_attention.py", line 127, in forward
return self.recurrent_forward(hidden_states, kv_state, k_state, q, k, v)
File "/app/based/models/mixers/linear_attention.py", line 195, in recurrent_forward
kv_state += k[:, :, -1:] * v[:, :, -1:]
RuntimeError: The size of tensor a (16) must match the size of tensor b (273) at non-singleton dimension 4
Is this due to code changes 2 days ago or I am missing some steps?
yes that was due to the changes, please try again and let me know if you run into issues
it works now! 🎉 thank you!